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Arthropods exhibit vast phenotypic diversity
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What are the details of these 6 steps in 
the context of the i5k project?
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1) Predict orthogroups – OrthoDB

38,195 ortho-groups across 76 arthropod species

(See i5k webinar from Feb. 1, 2017: http://i5k.github.io/webinar) 

Rob Waterhouse

Evgeny Zdobnov

Panagiotis Ioannidis

http://i5k.github.io/webinar
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2) Select single-copy orthogroups

How many single-copy orthologs in our 38,195 groups?
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0
1 family single copy in all but one species

(2 copies in Plutella xylostella)

How many single-copy orthologs in our 38,195 groups?

2) Select single-copy orthogroups
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EOG8DFS3J

Single-copy in all but one species 
(2 copies in Plutella xylostella)

Problem: Hemiptera not 
monophyletic

Problem: Lepidoptera and 
Trichoptera nested within 
Diptera

How can we turn our species rich data into 
sequence rich data?
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Construct a backbone tree among orders rather 
than species

Phylum # Orders # single-copy orthologs

Arthropoda 21 150

Then use single-copy orthologs from the 6 multi-species 
orders Order # Species # single-copy orthologs

Araneae 4 1627

Hemiptera 7 2053

Hymenoptera 24 2121

Coleoptera 6 3880

Lepidoptera 5 3660

Diptera 14 1324
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Construct a backbone tree among orders rather 
than species

Phylum # Orders # single-copy orthologs

Arthropoda 21 150

Then use single-copy orthologs from the 6 multi-species orders to construct 
order-level trees

Order # Species # single-copy orthologs

Araneae 4 1627

Hemiptera 7 2053

Hymenoptera 24 2121

Coleoptera 6 3880

Lepidoptera 5 3660

Diptera 14 1324
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3) Align each group

Phylum # Orders # single-copy orthologs

Arthropoda 21 150

Order # Species # single-copy orthologs

Araneae 4 1627

Hemiptera 7 2053

Hymenoptera 24 2121

Coleoptera 6 3880

Lepidoptera 5 3660

Diptera 14 1324

Two alignment programs:

1. MUSCLE
2. PASTA
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4) Infer gene trees

Phylum # Orders # single-copy orthologs

Arthropoda 21 150

Order # Species # single-copy orthologs

Araneae 4 1627

Hemiptera 7 2053

Hymenoptera 24 2121

Coleoptera 6 3880

Lepidoptera 5 3660

Diptera 14 1324

RAxML: 
with PROTGAMMAJTTF 
amino acid substitution 
model
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Phylum # Orders # single-copy orthologs

Arthropoda 21 150

Order # Species # single-copy orthologs

Araneae 4 1627

Hemiptera 7 2053

Hymenoptera 24 2121

Coleoptera 6 3880

Lepidoptera 5 3660

Diptera 14 1324

RAxML: 
with PROTGAMMAJTTF 
amino acid substitution 
model

Topologies largely 
insensitive to substitution 
model
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5) Infer species tree

Phylum # Orders # single-copy orthologs

Arthropoda 21 150
Three species tree methods:

1. Average consensus
2. Concatenation
3. ASTRAL
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Monophyletic 
Crustacea??
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Araneae: 1627 genes

Hemiptera: 2053 genes

Hymenoptera: 2121 genes

Coleoptera: 3880 genes

Lepidoptera: 3660 genes

Diptera: 1324 genes

The Arthropod 
phylogeny
Disagreement between 

methods
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6) Scale branch lengths with fossil 
calibrations

Crown group Node Min time Max time
Euarthropoda 75 514 636.1
Arachnida 74 432.6 636.1
Parasitiformes 72 98.17 514
Mandibulata 67 514 636.1
Multicrustacea 64 487 636.1
Pterygota 62 322.83 521
Paleoptera 1 319.9 521
Neoptera 61 319.9 411
Blattodea 2 130.3 411
Eumetabola 60 319.9 411
Condylognatha 58 306.9 411
Hemiptera 57 306.9 411
Holometabola 51 313.7 411
Hymenoptera 25 226.4 411
Aparaglossata 50 313.7 411
Coleoptera 30 208.5 411
Mecopterida 49 271.8 411
Amphiesmenoptera 35 195.31 411
Lepidoptera 34 129.41 411
Diptera 48 240.5 411

Order Node Min time Max time
Hymenoptera HY25 89.9 93.9
Hymenoptera HY13 23 28.4

Use r8s to smooth the tree:

Penalized likelihood method 
to correlate rates of 
evolution among branches
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LICA 350 mya

Arthropod Time Tree

Holometabola
311 mya
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Arthropod Time Tree

The branches of the ML tree 
can be scaled by time to 
infer substitution rates

Rates are mostly consistent 
across arthropods

Burst of rapid evolution in 
ancestral holometabolites
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1. Determining the Arthropod phylogeny

2. Reconstructing ancestral gene counts

3. Using the i5k gene family web site
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Ancestral gene counts inferred 
with: 

1. Maximum likelihood (CAFE) for 
the 6 multi-species orders

2. Parsimony (Dupliphy) for all 
nodes



Ancestral gene counts: Example
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Ancestral gene counts: Example
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Tips: observed variables
xi: hidden variables

Our goal is to infer the 
states of the internal 
nodes of the tree

Then we can count 
changes along each 
lineage

1

3
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1

1

1
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With ancestral gene counts we can:

1. Infer rates of gene gain/loss
2. Count gene gains and losses and check for 

rapid changes on every lineage
3. Estimate gene counts in extinct ancestors
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LICA 350 mya

Rates of gene 
gain/loss between 
orders are largely 

consistent

Holometabola
311 mya

Araneae: 0.0017

Hemiptera: 0.0011

Hymenoptera: 0.0009

Coleoptera: 0.0010

Lepidoptera: 0.0014

Diptera: 0.0010



79

Arthropod Time Tree

The branches of the ML tree 
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infer lineage specific 
gain/loss rates

Rates are mostly consistent 
across arthropods

Burst of rapid evolution in 
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Elias Dohmen
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Gene gain and loss rates are correlated with 
protein domain rearrangements
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With ancestral gene counts we can:

1. Infer rates of gene gain/loss
2. Count gene gains and losses and check for 

rapid changes on every lineage
3. Estimate gene counts in extinct ancestors
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What specific gene family changes are 
interesting or important?

4 4 2 Gene copy number variation

4

4
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gene families

Araneae
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families within Araneae
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Spider silk and venom 
gene families
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Araneae

• 10 rapidly expanding gene 
families within Araneae
related for silk or venom

• High rate of protein domain 
emergences, including some 
related to venom

Jessica Garb
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With ancestral gene counts we can:

1. Infer rates of gene gain/loss
2. Count gene gains and losses and check for 

rapid changes on every lineage
3. Estimate gene counts in extinct ancestors
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LICA

00

Estimated: 9,601 genes

LICA

Corrected: 14,965 genes
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7 chitin and cuticle production families 
Changes in exoskeleton 

development

1 visual learning and behavior family
2 odorant binding families 

5 families involved in neural activity

Ability to sense in a 
terrestrial environment

3 wing morphogenesis familiesFlight

1 larval behavior family 
4 imaginal disk development families

Unique 
development
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Lepidoptera has the most emergent gene 
families
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1. Determining the Arthropod phylogeny

2. Reconstructing ancestral gene counts

3. Using the i5k gene family web site
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All data has been made available in our online tool
https://i5k.gitlab.io/ArthroFam/

https://i5k.gitlab.io/ArthroFam/


Working search functions temporarily available at:
https://cgi.soic.indiana.edu/~grthomas/i5k-web/main.html

https://cgi.soic.indiana.edu/~grthomas/i5k-web/main.html


Demo

114



Acknowledgements

• Matthew Hahn

• Stephen Richards

• Rob Waterhouse

• Jessica Garb

• Elias Dohmen

• Ariel Chipman

The i5k community

The Hahn lab + Clara Boothby

Gene family website: 

https://i5k.gitlab.io/ArthroFam/

i5k website: 

http://i5k.github.io/

https://i5k.gitlab.io/ArthroFam/
http://i5k.github.io/

