

An evolutionary perspective to interpreting genomics data

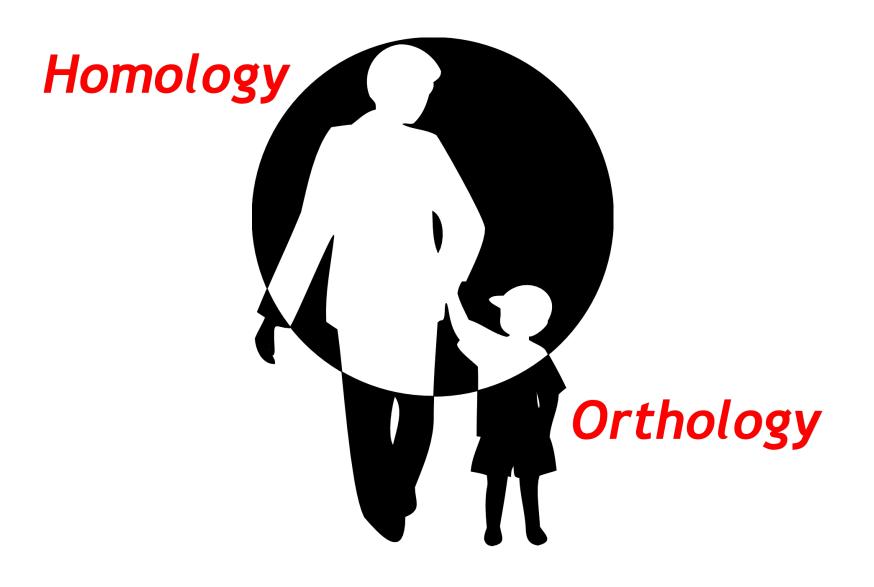
The i5k Webinar Series February 1st 2017

Prof. Evgeny M. Zdobnov & Dr Robert M. Waterhouse University of Geneva & UNIVERSITÉ DE GENÈVE Swiss Institute of Bioinformatics

FACULTÉ DE MÉDECINE Department of Genetic Medicine and Development Geneva, Switzerland

<u>What</u> is orthology?

Understanding the definitions


How does one delineate orthology?

Getting to grips with the methodologies

What does OrthoDB offer?

Using orthology in your research

<u>What</u> is orthology?

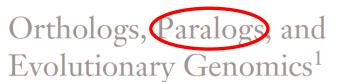
<u>What</u> is orthology homology?

Homology

"designates a relationship of **common descent** between any entities, without further specification of the evolutionary scenario"

Orthologs, Paralogs, and Evolutionary Genomics¹

Eugene V. Koonin


Annu. Rev. Genet. 2005. 39:309–38

<u>What</u> is orthology?

Homology

"genes originating from a **single ancestral gene** in the last common ancestor of the compared genomes"

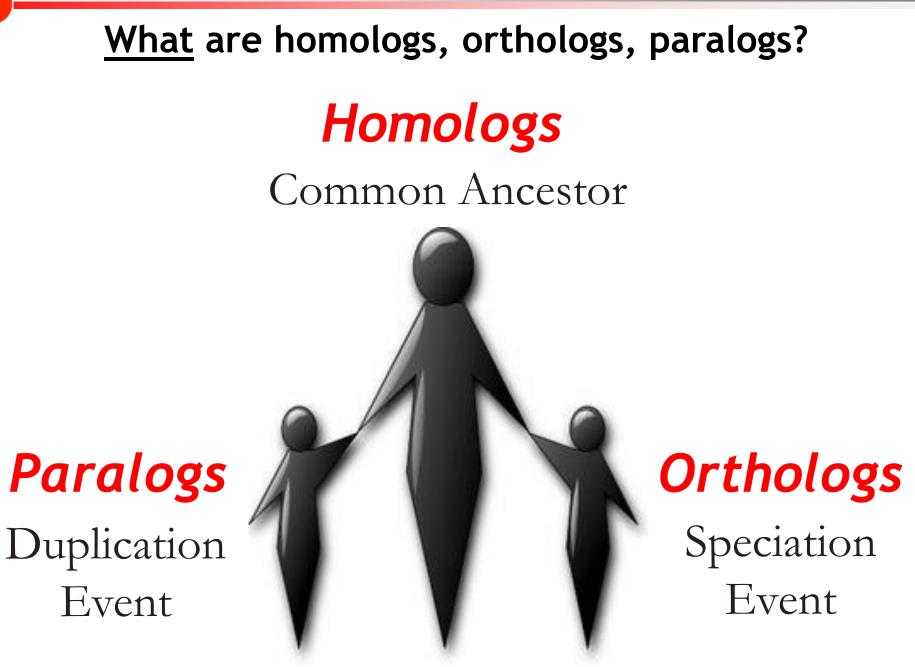
Eugene V. Koonin

Annu. Rev. Genet. 2005. 39:309–38

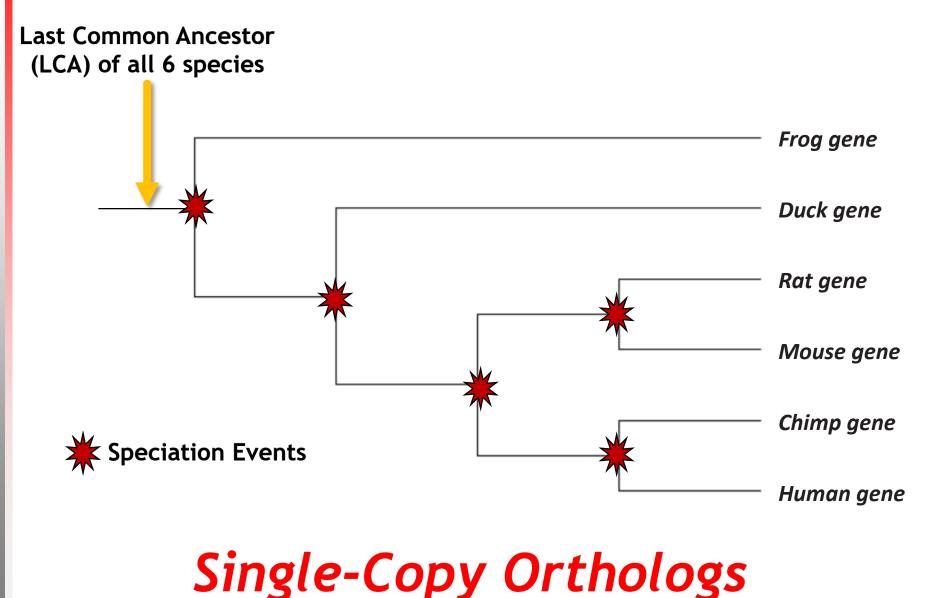
<u>What</u> is paralogy?

Homology

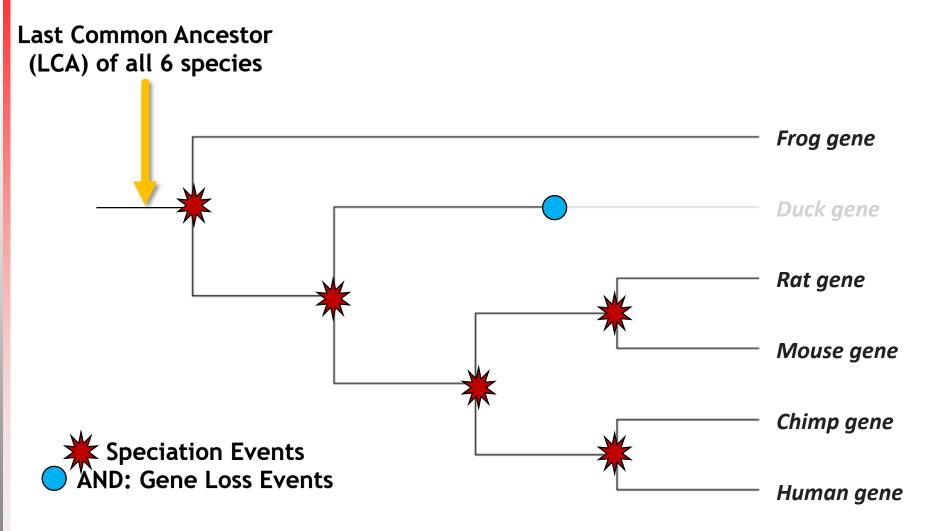
"paralogs are genes related via **duplication**"


Paralogy

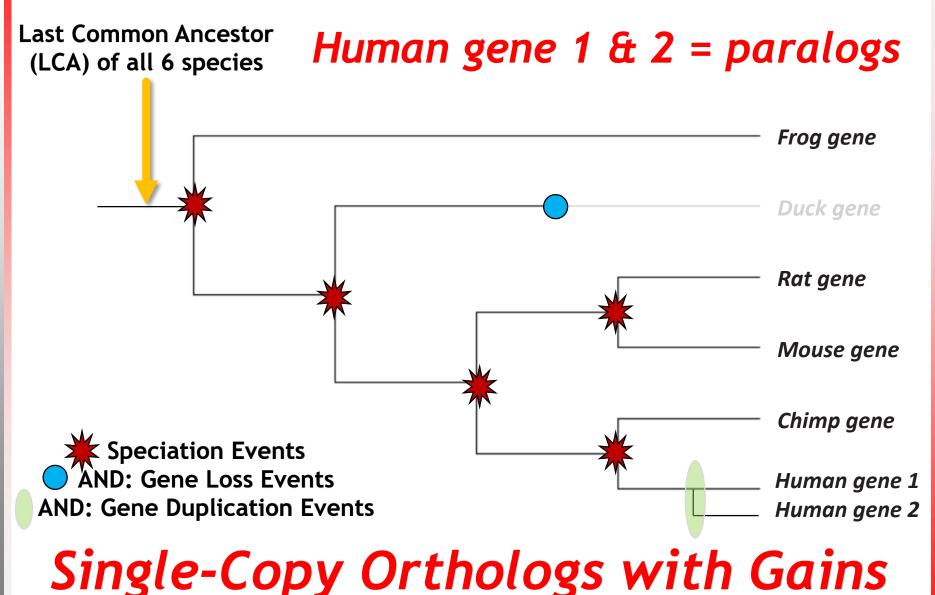
Orthologs, Paralogs, and Evolutionary Genomics¹


Eugene V. Koonin

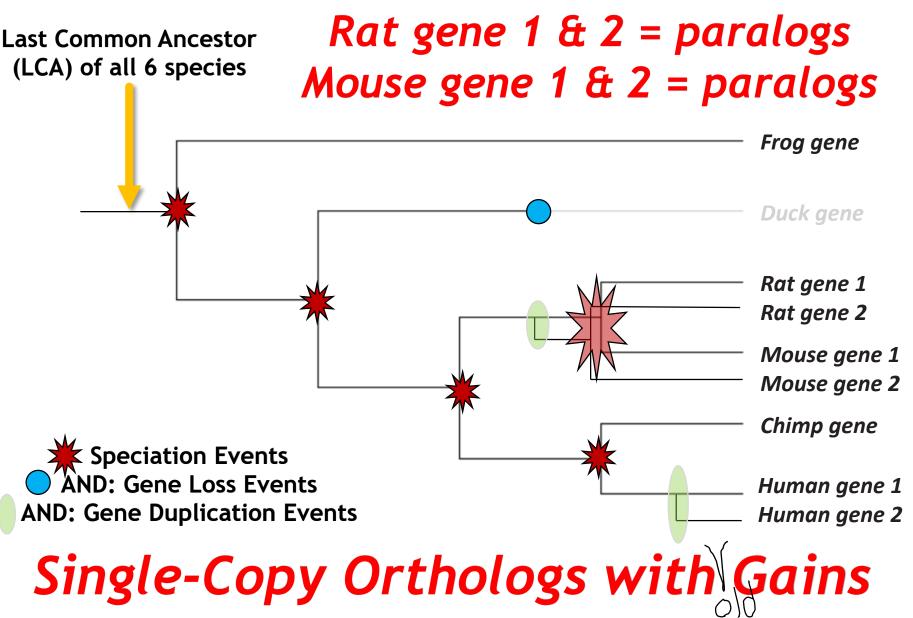
Annu. Rev. Genet. 2005. 39:309–38


© Robert M. Waterhouse

Orthology: a simple scenario



Orthology: evolution \neq a simple scenario



Single-Copy Orthologs with Losses

Orthology: evolution \neq a simple scenario

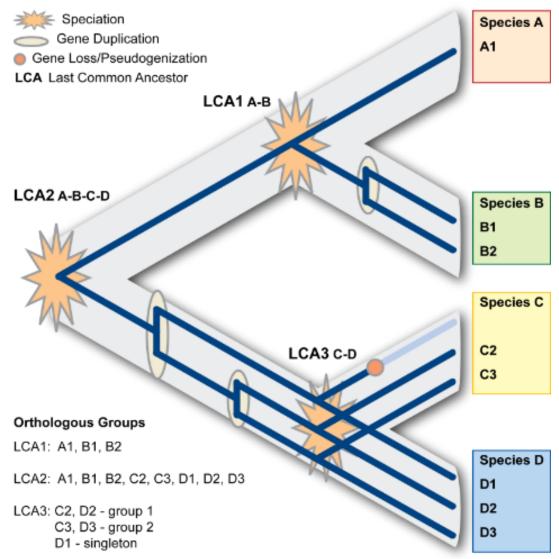
Orthology: evolution \neq a simple scenario

<u>What</u> is orthology?

Homology

Recognizing similarities as evidence of shared ancestry

Orthology


Orthologues arise by vertical descent from a single gene of the last common ancestor

Hierarchy

Orthology is relative to the species radiation under consideration

Orthologous Groups

All genes descended from single gene of last common ancestor

What orthology is NOT!

Orthology & Paralogy

... are concepts defined by evolutionary scenarios ...

there is nothing in this definition that refers to gene function!

Orthology ≠ Function

... nevertheless ...

Homology refers to **common decent**, and so generally: just as the sequences themselves are **inherited** so too can the **biological functions** of the encoded proteins

Orthology ≈ Function

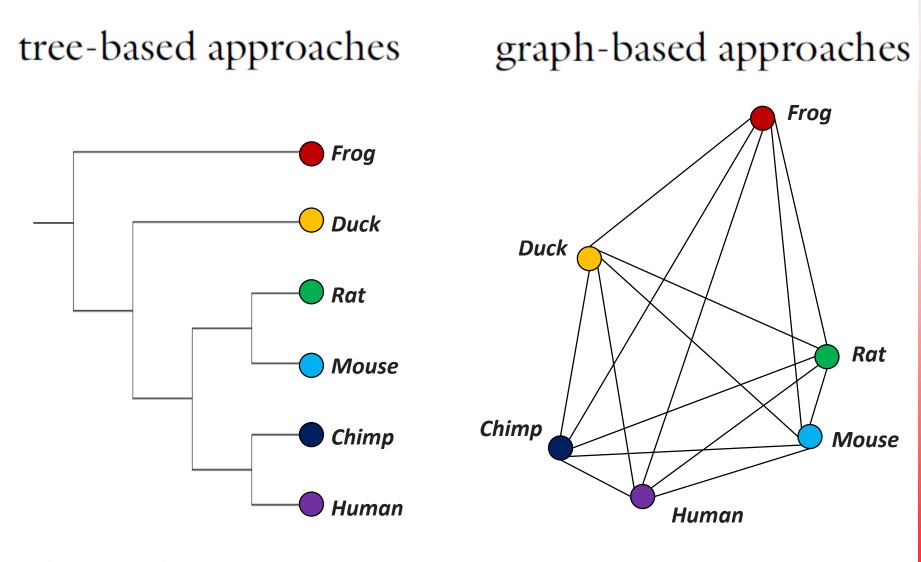
"a crucial property of orthologs, which is both theoretically plausible and empirically supported, is that they **typically perform equivalent functions** in the respective organisms"

Annu. Rev. Genet. 2005. 39:309–38

"As in the case of orthology, the definition of paralogy does not refer to biological function, but there are major functional connotations. Generally, paralogs perform **biologically distinct, even if mechanistically related, functions**."

<u>What</u> is orthology?

Understanding the definitions


How does one delineate orthology?

Getting to grips with the methodologies

<u>What</u> does OrthoDB offer?

Using orthology in your research

How does one delineate orthology?

Inferring Orthology and Paralogy Methods Mol Biol. 2012;855:259-79

How does one delineate orthology?

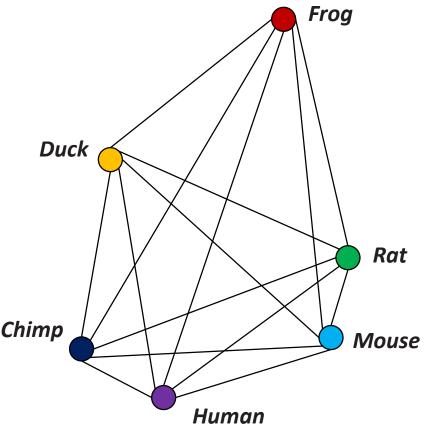
tree-based approaches

Tree Reconciliation

Incongruences between gene and species trees can be explained in terms of speciation, duplication, and loss events on the gene tree

Most methods rely on parsimony - the most likely reconciliation is the one which requires the least number of gene duplications and losses

Inferring Orthology and Paralogy Methods Mol Biol. 2012;855:259-79

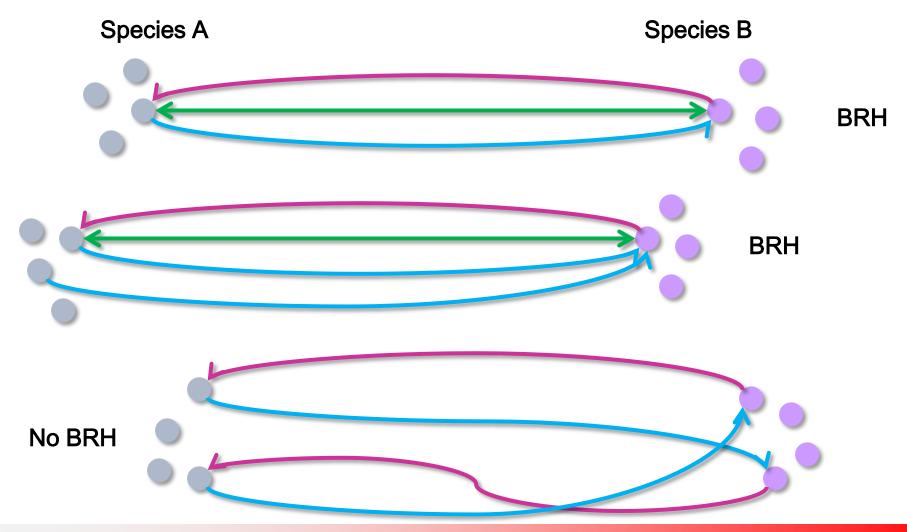

How does one delineate orthology?

Graph Clustering graph-based approaches

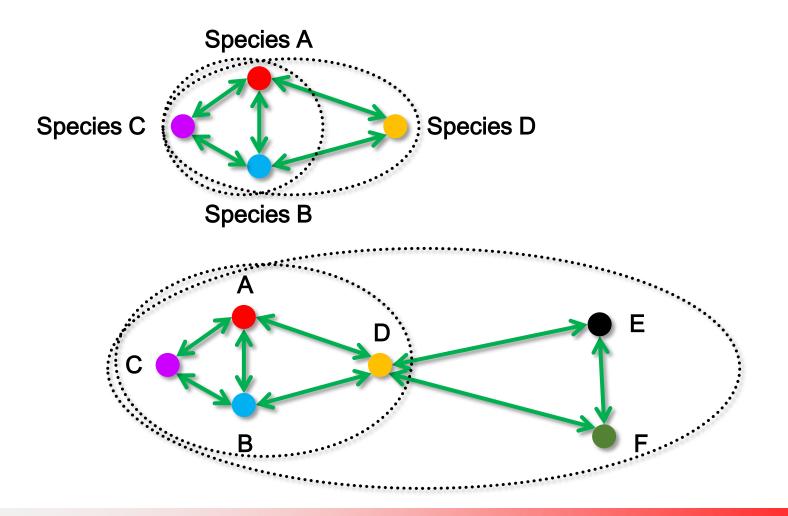
Graph construction by mapping all pairwise gene homologies

Genes are nodes on the graph connected by edges reflecting their 'evolutionary distances'

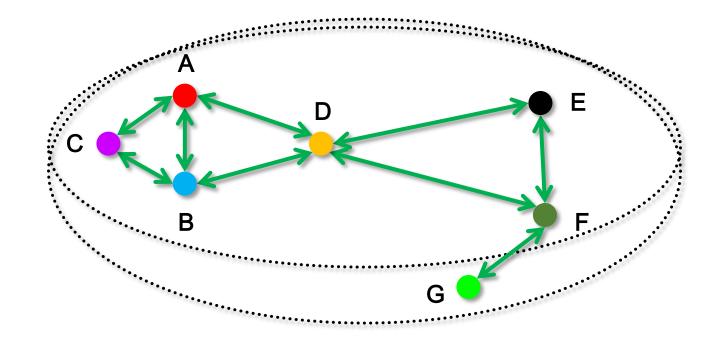
Clustering then considers all pairwise information to build ^{Ch} orthologous groups

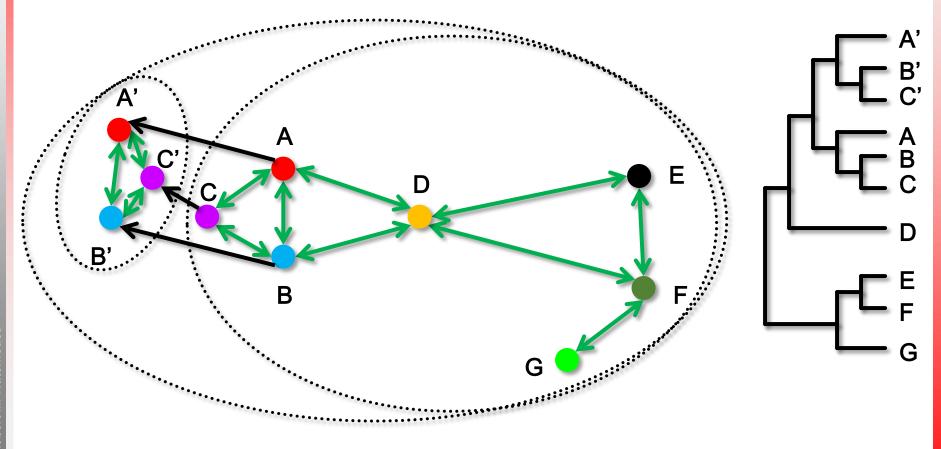

Inferring Orthology and Paralogy Methods Mol Biol. 2012;855:259-79

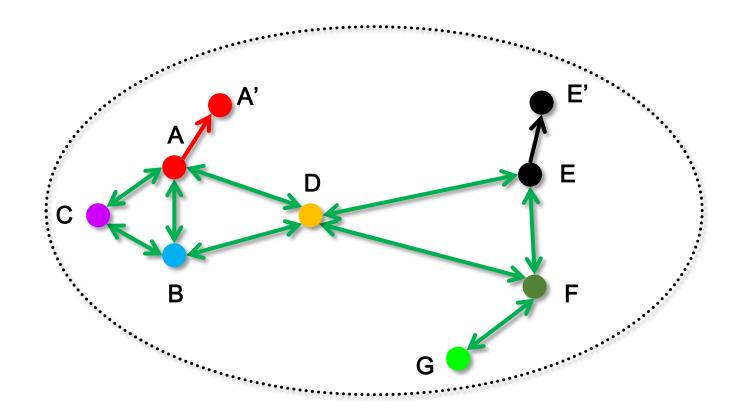
A) Select longest protein-coding transcript from genes with alternative transcriptsB) Remove near-identical proteins from each gene set (97% identity)



A) All-against-all Smith-Waterman pairwise alignments

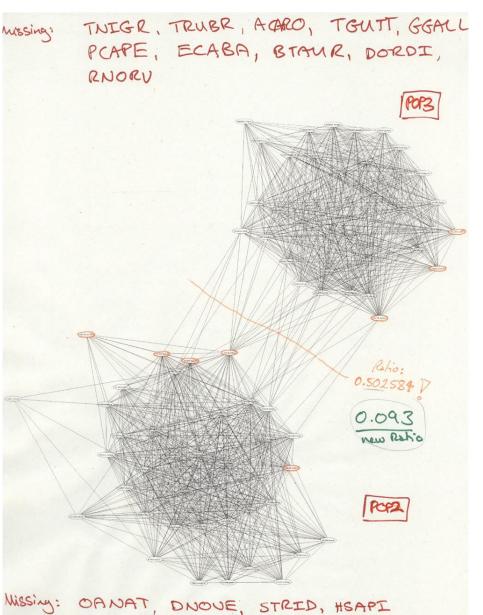

B) Define Best-Reciprocal-Hits BRHs: between proteins from species A & B


A) Build BRH TRAINGLES: start with highest-scoring BRHs and move down the list
 B) BRH TRIANGLES at e<1e-3 cut-off & >20aa alignment overlap


BRHs connected to triangles, but which don't form triangles themselves => join clusters with e<1e-6 cut-off & >20aa alignment overlap

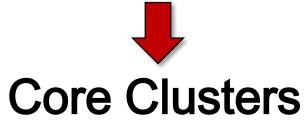
A) PARALOGOUS GROUPS: within-species homologs in different clusters
 B) If the within-species homolog scores are better than the within-cluster BRH scores, the paralogous cluster can be merged into the main cluster

- A) Consider within-species homologs that DID NOT get clustered (singletons)
- B) If the within-species homolog score is better than within-cluster BRH scores, the singleton is added to the cluster as a paralog
- C) Also the near-identical proteins that were initially excluded from clustering


Real data are **COMPLEX**, e.g. cases of DIFFERENTIAL GENE LOSS

Prevent cluster merges where WITHIN-cluster connectivity is much stronger than BETWEEN-cluster connectivity

Real example:


POP3 missing from 10 vertebrates

POP2 missing from 4 vertebrates

Pairwise Relationships

All-Against-All Alignments
 Delineate Best-Reciprocal-Hits

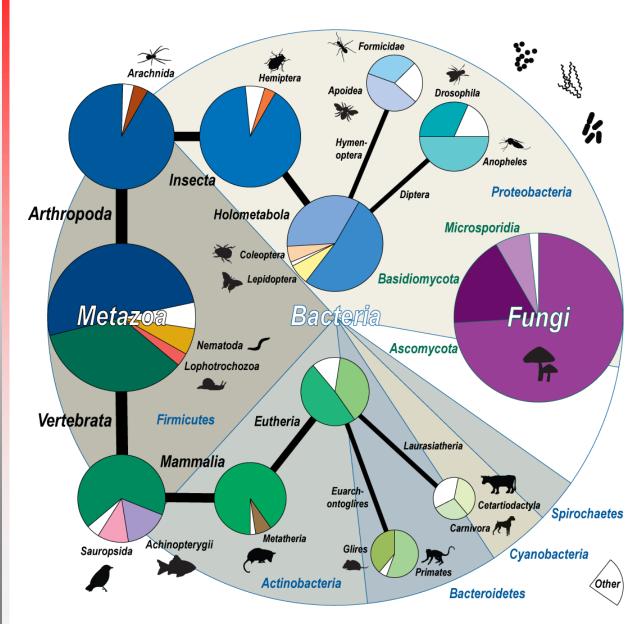
Progressive BRH Triangulation

Extended Clusters

- Add Pair-Only BRHsAdd Paralogous Groups
 - ✤ Add Paralogs

<u>What</u> is orthology?

Understanding the definitions

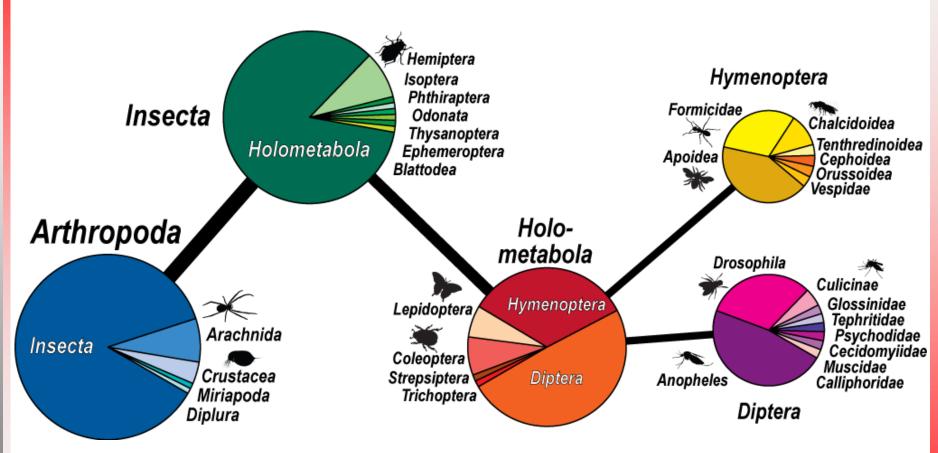

How does one delineate orthology?

Getting to grips with the methodologies

What does OrthoDB offer?

Using orthology in your research

Orthology @ OrthoDB


Species Coverage:

- > 3663 Bacteria
- 435 Archaea
- 3139 Viruses
- 588 Eukaryota
- 227 Fungi
- 31 Plants
- 330 Metazoa
 - 133 Arthropoda
 - 172 Vertebrata

Access:

- ✓ Web browser
- ✓ JSON API
- ✓ Data downloads
- Software package

Orthology @ OrthoDB

i5K species adding to the diversity of sampled lineages!

OrthoDB

The Hierarchical Catalog of Orthologs **V9.1**

OrthoDB is a comprehensive catalog of orthologs, i.e. genes inherited by extant species from their last common ancestor. Arising from a single ancestral gene, orthologs form the cornerstone for comparative studies and allow for the generation of hypotheses about the inheritance of gene functions. Each phylogenetic clade or subclade of species has a distinct common ancestor, making the concept of orthology inherently hierarchical. From its conception, OrthoDB explicitly addressed this hierarchy by delineating orthologs at each major species radiation of the species phylogeny. The more closely related the species, the more finely-resolved the gene orthologies.

Read more or cite

"OrthoDB v9.1: cataloging evolutionary and functional annotations for animal, fungal, plant, archaeal, bacterial and viral orthologs." Zdobnov EM et al, NAR, Nov 2016, PMID:27899580

Examples of how you can query OrthoDB

Cytochrome P450, protease | peptidase, kinase -serine, FBgn0036816, GO:0006950, immune response, stress response, breast cancer, diabetes.

Help and Email: support[at]orthodb.org

<u>Data downloads</u> Protein sequences and orthologous group annotations for major clades. <u>OrthoDB software</u> Can be used to compute orthologs on custom data. <u>BUSCO.v2</u> Assessing completeness of genome assembly and annotation with single-copy genes.

OrthoDB-News Join the mailing list to keep abreast of the latest developments.

Build your query Search by sequence	Build your query Search by sequence
Text search: ? Phyloprofile: ? [No filtering] • [No filtering] •	Copy a protein sequence (<1000 a.a.):
Search at:?	Search at:?
Species to display: Clear all	Species to display: Clear all
Submit	Submit

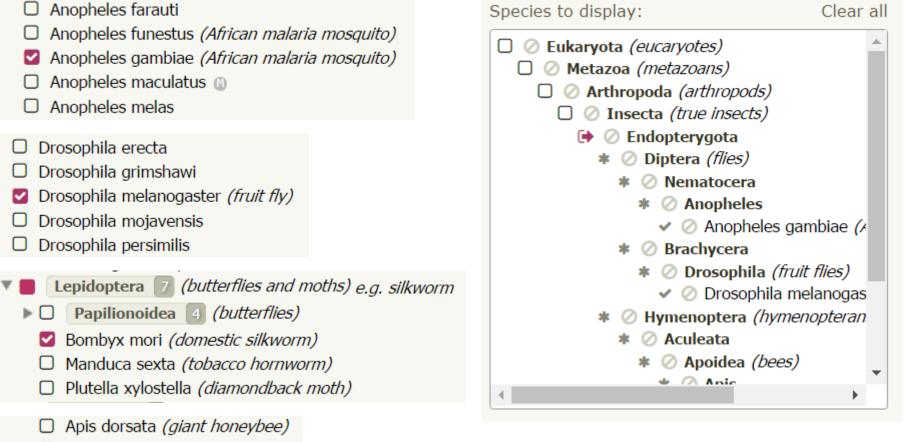
Main entry points for browsing orthology data:TEXT SEARCHSEQUENCE SEARCH

Build your query Search by sequer	nce		
Text search: Phyloprofile: [No filtering]	?	Phyloprofile: [No filtering] Present in all species Present in >90% species Present in >80% species Searcn at:	(
[No filtering]		– Phyloprofile: ––––––––––––––––––––––––––––––––––––	
– Search at:	?	Present in all species [No filtering] 	
Species to display:	Clear all	[No filtering] Single-copy in all species Single-copy in >90% species Single-copy in >80% species	
Submit			

Phyloprofile filtering of text-search results:PRESENCESINGLE-COPYNESS

Using OrthoDB in your research
- Select species:?
Search species by name:
 Eukaryota 588 (eucaryotes) e.g. S.cerevisiae, C.elegans, M.oryzae, coelacanth, black-legged tick, water flea, Metazoa 330 (metazoans) e.g. C.elegans, coelacanth, black-legged tick, water flea, platypus, X.tropicalis, Fungi 227 (fungi) e.g. S.cerevisiae, M.oryzae Embryophyta 31 (plants) e.g. A. thaliana, potato, bread wheat Bacteria 3663 (eubacteria) e.g. S.pneumoniae, E.coli, E.faecalis, S.agalactiae, H.pylori, A.baumannii Archaea 345 e.g. Haloferax volcanii Viruses 3139

Select species of interest ...


Select species from the tree
 Select nodes from the tree
 Search species names to select

- Select species:

Search species by name:

	apis	
	Apis	
v	Apis cerana (Asiatic honeybee)	.cer
	Apis dorsata (giant honeybee)	Cel
	Apis florea (little honeybee)	e.g
	Apis mellifera (honey bee)	e.g
	Spiroplasma apis B31	e.g
		ea

Selection tree expands and selected species marked

'Species to display' panel now

shows only selected species

- □ Apis florea *(little honeybee)*
- Apis mellifera (honey bee)
- Bombinae

Robert M. Waterho

Dufourea novaeangliae

Using **OrthoDB** in your research Search for a term, e.g. immunity

Build your query	Search by sequence	
— Text search:		?
immunity		
immunity (10)		
[No filtoring]	_	· · · ·
[No filtering]	*	
[No filtering]	•	
– Search at: ––––		?
Endopterygota	•	
Species to display	:	Clear all
□ ⊘ Ins		biae (/

Autocomplete with counts of cached terms shown

NB: 'Search at' is now set automatically to the last common ancestor level of all the species you selected You can choose older one:

ſ	Search at:	?
	Endopterygota 🔹	
	Eukaryota Metazoa	Clear all
	Arthropoda	
	Insecta	
	Endopterygota	

Using **OrthoDB** in your research 10 orthologous groups returned

OrthoDB	Your search for immunity at Endopterygota level returned 10 g Bookmark <u>OrthoDB@Endopterygota</u> <u>Get All Fasta</u> <u>Get All as Tab delimi</u>	
Group <u>EOG090R04SW</u> at Endopterygota level Similarity:Contains 1 RHD (Rel-like) domai	194 genes in 98 species in.	>>
Group <u>EOG090R0F9M</u> at Endopterygota level Nuclear cap-binding protein subunit 2	90 genes in 85 species	>>>
Group <u>EOG090R04J6</u> at Endopterygota level Arsenite-resistance protein 2	100 genes in 98 species	>>
Group <u>EOG090R03S4</u> at Endopterygota level Nuclear cap-binding protein subunit 1	102 genes in 99 species	>>
Group <u>EOG090R0FIQ</u> at Endopterygota level Peptidoglycan recognition protein	348 genes in 97 species	>>
Group <u>EOG090R07LX</u> at Endopterygota level Protein kinase domain	122 genes in 95 species	>>
Group EOG090R008X at Endopterygota level	110 genes in 100 species	

Using **OrthoDB** in your research OrthoDB Your search for **immunity** at Endopterygota level returned 10 groups Bookmark(OrthoDB@Endopterygota) Get All Fasta | Get All as Tab delimited ?? 1. Drag the Bookmarklet link to your toolbar to be able to quickly and easily conduct future searches at this level OrthoDB@Endoptery@ nal Evolutionary Genomics **Comparative Charts** Help × www.orthodb.org says: Your search for immunity Search OrthoDB at Endopterygota level mark OrthoDB@Endopterygota Prevent this page from creating additional dialogs. OK Cancel

OrthoDB

Your search for immunity at Endopterygota level returned 10 groups

Bookmark OrthoDB@Endopterygota(Get All Fasta) Get All as Tab delimited ?

2. Get ALL protein sequences (FASTA format) from the selected species for ALL 10 of the search result orthologous groups

>7070:00073c {"pub_gene_id":"TC002498", "pub_og_id":"E0G090R008X", "og_name":"Similarity:Contains FAD-binding FR-type domain.","level":33392, "description":"Putative uncharacterized protein "} MVSLTSLLFHVLTFCVIVLVAISTURPEVRTEKQRYDGWFNULAHPDWGSVGSHLIRRAPSAYSDGVYMLAGQNRPSPRKLSRLFMRGLDGLGSMNNRTALLAFFGQMVTSEVMMASESGCPIEMHHIEIKCDDVYDKERGDVIPFRAGVDRKTGQSPNSPREQLNQVTSWIDGSFIYSTSEPWVMARSFRNGTFLTDA' RNSMRVPLFNNPVPHVMKMLSTERLFLLGDPRTNQNPALLTISILFFRWHNVIAERVQKEHPDWSDEDVFQRTRRIVVATVQNIIAYEYIPAFLGQPLPEYSGYKQDVHPGVTHVFQSAAFRYGHSLIPPGLYRDGECNFEESPMGLLCATWWDSNDVLISHSLEKLLMGMASQLAEREDSVLCSDVRDKLFGPMESPRGLFTVIXEQFARLRSDSRFWFENEGNGIFTREITASLRKVTLWDVIVNSTNIAPNHIQKNVFFWMSGDPCPQPMQLNTSLMEPCKILNGVDYFEGNELVYIYACVFLAFVPILCAGAGYGVVL(QNRRRRRLKI RGRDSGLPDYNTIRAYYGLPKIKKWADINPKLFEEKPELLRALVSAYANNINNIDYVVGGMLESYGGPGLFTTVIKEQFARLRSDSRFWFENEGNGIFTREITASLRKVTLWDVIVNSTNIAPNHIQKNVFFWMSGDPCPQMQLNTSLMEPCKILNGVDYFEGNELVYIYACVFLAFVPILCAGAGYGVVL(QNRRRRRLKI NCVEGKLPVDTMIVQEWLHANHKRLVKIKFGPEIAIHIMGRKGEKLRTVNFKNTETVYVEISVELTNQKKPMLLIRVPRDHDLVIELDSIGSRKKFLTKLELFLTSNKKSLIITEVVREIMLAKAETSERRQKKLEHFFREAYALTFGLRPGERRRRSDASVDGEVVTVMRTSLTKSEFASALGMKHDAVFVKKMFNIVDKDGDG EFLDTVVLFSRGKTDDKLRIIFDMCDNDGNGVIDKEELSEMLRSLVEIARTTSLSDDHVTELIEGMFQDAGLQHKHFLTYNDFKEMMKEYKGEFVAIGLDCKGAKQNFLDTSTNVARMTSFHIEPTLDSEKNYLELKWNSLTTFLEENRQNIFYLFIFYVITIALFVERFIHYSFMAEHTDLRHIMGVGIAITRGSAASLSFCY: MSRNLTKLKEFSIQQYIPLDTHIQFHKIAACALFFSLLHTVGHIVNFYNVSTQPLENLRCLTNEVRFPSDVKPGITFWLFQTIGLGVFLFVIMSIIIVFAHPTIRKKAYNFFWATHNLYILYLCLIHGLARLTGAPRFWLFFIGPGTIYLDKVSLRTKYIPLDVIETELLPSDVKKIKFYRPPNLKYLSQQWVRLAI HEFHSFTLTSAPHENFLSCHIKAQGPWTWKLRNYFDPSNYNPEDQPKILLEGFFGGGNQDWYKFEVAVMVGGGIGVTPYASILNDLVFGTSTNRYSGVACKKVYFLWICPSHKHFEWFIDVLRDVEKKDVTNVLEIHFITQFFHKFDLRTMLYICENHFQRLSKTSIFTGLKAVNHFGRPDMTSFLKFVQKRHSYVSKIGVF: LTXSVMSACDDVNKGRKLPYFTHHFENFG

>7091:001565 "pub_gene_id":"BGIBMGA005478", "pub_og_id":"EOG090R008X", "og_name":"Similarity:Contains FAD-binding FR-type domain.","level":33392

MAGRERPGARTLSKIFMRGQDGLPSLTNRTALLAFFGQVVTGEIVMASESGCPIEHHRIPVDKCDHMYDSECQGÄYYMPFLRAAYDRNTGQSPNSPREQINQMTSWIDGSFVYSTSEAWVNAMRSFQNGSFASDGGMPLRNTKRVPLFNNPVPHYMRMLSPERLFLLGDPRTNQNPAMVSFGILLFRWIHVDVAARVHKQHPDWSI RARRIVIASLQNIILYEYVPAFLGAALPPYEGYKPEVAPGVTHEFAVAAFRFGHTLVPAILLNRRKCGYGRAPGGHDAIRLCQTWMDGNUDMSQVPLEEVLMGMASQLSEREDALLCSDVRDNLFGPRESRRDLGALNIMRGRDNGVPDVNTVREYFGLRKITFHEINPDLLQKFIQINADSLDYCHWASAGDGCOPYQULASKLPPCHUMGMASQLSEREDALLCSDVRDNLFGWFBSRDLGALNIMRGRDNGVPDVNTVREYFGLRKITFHEINPDLEELRRITLWDIIVNSTTIGAEDIQRDVFHWRAGDPCOPYQULASKLPPCKILGYGWFAGDFAPEVCLUMGMASQLSEREDALLCSDVRDNLFGWFBGNEGYEVKLQNSRRRKLIQGHLKIAQCKGSVDKMVCREWMASHKRLVKLRLGPESALHVTDRKGEKLRTLPLDHTDQLTVVESQ RPLVLVRVPREHDLVLEMDSIASRRKFLVKLDTFLAQHKKALNLTQGPREQILATAETRERRQRKLEHFFREAYAITFGLAPGEKRRRSEDADPESIVMRTSLSKSEFASALGMKGDAVFVKKMFNIVDKDGDGRISFQEFLDTVVLFSRGATEDKLRIIFDMCDNDRNGVIDKGELSEMLRSLVEIARTTSLRDEHVTELIDG LQHKDHLTYSDFKLMMKEYKGEFVAIGLDCKGAAQNFLDTSTNVARMTSFHIEPSMEQTRHMLLLKMDTITTFLEENRQNIFVLFIFVVTIGLFVERFAHYSFMSEHLDLRHMGVGIATTRGSAASLSFCYSLLLTKKRAVFWHENKALALLLKNDTLTTELEENRQNIFVLFIFVVTIGLFVERFAHYSFMSEHLDLRHMGVGIATTRGSAASLSFCYSLLLTKKRAVFWHENLSKLALALLLKNDTLTFLEERRQNIFVLFIGAPTWILFUKVLLDVLETMLFVKLEVKLALDVLETMENLSKVKLANGVEXKKEVKLSGVVFXKKRFNVKLGNSKRKRVKLANGTHFGRDMSTGLFFGGGGQDWYKFEV GGGGVTPYASILNDLVFGTSTNSSGVLEFVIGTRFAHFENFGFG

>7165:002379 {"pub_gene_id":"DUOX", "pub_og_id":"EOG0900R008X", "og_name":"Similarity:Contains FAD-binding FR-type domain.","level":33392, "description":"Similarity:Contains FAD-binding FR-type domain."} MSHVEKQRYDGWYNNLAHPDWGAVDNHLTRKAPSAYSDGVYVMAGSNRPSPRKLSRLFMRGTOGLPSMENRTALLAFFGQVTHVEIVMASESGCFIEMHRTEIEKCDEMYDRECRGDRYIPFHRAAYORNTGQSPNAPREQINQMTANIDGSFIYSTSEAMLNAMRSFQDGALLTDKQGTMPVKNTMRVPLHVMRMRLS LGDPRTNQNPALLSFAILFLRWHNVVAKRVRRQHRDWSDEEIFQRARRVVIASLQNIVAYEYLPAFLDKEIPPYDGYKADTHPGVSHMFQAAFRFGHSLIPPGLFRCDQCNFRRTNMDFPALRLCSTWWNSNDVLDNTPVEEFIMGMASQIAEKEDPLLCSDVRDKLFGPMEFTRDLGALNIMRGDNGIPSMENTALLAFFGQVTNUSHMFQAAFRFGHSLIPPGLFRRDGQCNFRRTNMDFPALRLCSTWWNSNDVLDNTPVEEFIMGMASQIAEKEDPLLCSDVRDKLFGPMEFTRDLGALNIMRGDNGIPSMEENEONGIFTKEETAEIRKFTLWDIIVNSTDIEADEIQRDVFHWKQGDPCOPGQUNATLLEPCNV1EGVOFFSGSELAYTVSCVFLGFVVILCAGAGYCVIKLQWSRRRKLKIKQEAMWKIANTKVSVSKKMAREWLI LVTVKFGPEASIYTVDRKGEKLRFNLKHVDVVTVEQSQENYTAKKPYILLRVPNDHDLVELESNSARRKFKKKLEDFLVLHKKTMTFVESNRDLMLAKAETRERQKRLEHFFREAYALTFGLRPGERRRSDASLDGEVMTVMRTSLSKSEFAAALGMKQDDMFVRKMFNIVDKDKDGRISFQEFLETVVLFSRGKTDDKL CDNDRNGVIDKGELSEMMRSLVEIARTTSVTDEQVNELIDGMFQDVSLEHKNHLTYEDFKLMMKEYKGDFVAIGLOCKGAKQNFLDTSTNVARMTSFHIEPISDSRRHWNQEKWDCYTTFLEENRQNIFYLFVITIVLFVERFIHYSFMAEHTDLRHZMGVGIAITRGSAASLSFCYSLLLLTMSRNLLTKLKEFPIQQYI QFHKTAACTALFFSLLHTVGHIVNFYHVSTQSIENLKCLTKEVHFTSDYRPDITYWLFQTIGVTGVMLFVTMCIIFAFAHFTIRKAYKFFWNAHSLYVVLYALCLVHGLARLTGAPRFWLFFIGPGIVVTLDKIVSLRKYMALDVIETDLLPSDVIKKFYRPPNLKYLSGQWVRLSCTEIKPEEMHSFTLSAPHENFLSI GPWTWKLRNYPDCNYNPDDQPKIRIEGPFGGGNQDWYKFEVAWNVGGGIGVTYASILNDLVFGTSTNRYSGVACKKVYFLWICPSHKHFEWFIDVLRDVEKKDVTNVLEIHFITQFFHKFDLRTTMLYICENHFQRLSKTSMFTGLKAVNHFGRPDMSSFLKFVQKKHSYVSKIGVFSCGPRPLTKSVMSACDEVNKSRKWW FNFG

>7227:000fd5 {"pub_gene_id":"Duox", "pub_og_id":"EOG090R008X", "og_name":"Similarity:Contains FAD-binding FR-type domain.","level":33392, "description":"Similarity:Contains FAD-binding FR-type domain."} MSVPSAPHQRAESKNRVPRPGQKINRKLPKLRLHWPGATYGGALLLLLISYGLELGSVHCYEKKYSQTEKQRYDGKVNNLAHPDWGSVDSHLVRKAPPSYSDGVYAMAGANRPSTRRLSRLFMRGKDGLGSKFNRTALLAFGKQUIANEIUMASSESGCPIEMHRIEIEKCDEMVDRECRGDKYIPFHRAAYORDTGQSPMAPREQ WIDGSFIYSTSEAWLNAMRSFHNGTLLTEKDGKLPVRNTMRVPLFNVPSVMKMLSPERLFLLGDPRTNQNPAILSFALLFLRWHNTLAQRIKRVHPDWSDEDIYQRARHTVIASLQNVIVYEYLPAFLGTSLPPYEGYKQUIANEIUMAAFRFGHTMIPPGIYRDGQCNFKETPMGYPAVRLCSTWDSSGFFADTS' GLASQISEREDPVLCSDVRDKLFGPMEFTRRDLGALNIMRGRDNGLPDVNTARESYGLKRHKTWTDIMPPLFTQPELLDMLKEAYONGGMLESYGQPGEFFTAVIKEQFQRLRDADRFWFENERNENGIFTPEIAELKRITLWDIIVNSTDVKEEEIQKDVFMNKTGDDCPQPMQLNATELEPCTYLEGYDYFSG: YVCVFLGFVPILCAGAGYCVVKLQNSKRRRLKIRQEALRAPQHKGSVDKMLAREWLHANHKRLVTVKFGPEAAIYTVDRKGEKLRTFSLKHIDVVSVEESATNHIKKKYVILLRVPSDHDLVLELESYGARRKFVKKLEDFLLLHKKEMTLMEVNRDIMLARAETRERRQKRLEYFFREAYALTFGLRPGERRRRSDASSDGEVI SLSKAEFAAALGMKPNDMFVRKMFNIVDKDQDGRISFQEFLETVVLFSRGKTDDKLRIIFDMCDNDRNGVIDKGELSEMMRSLVEIARTTSLGDDQVTELIDGMFQDVGLEHKNHLTYQDFKLMKKYGDFVAIGLDCKGAKQNFLDTSTNVARMTSFNIEPMQDKPRHwLLAKWDAYITFLEENRQNIFYLFLFYVVTIVLF' YSFMAEHTDLRHIMGVGIAITRGSAASLSFCYSLLLLTMSRNIITKLKEFTIGQYIPLDSHIG/FKLAACTALFFSVLHTVGHINNFTWSTQSHENLRCLTREVHFASDYKPDITFWLFQTVTGTTGVMLFIIMCIIFVFAHPTIRKKAYNFFWNMHTLYIGLYLLSLIHGLARLTGPPRFWMFFLGFGGIVYTLDKIVSLENK' IDTDLLPSDVIKIKFYRPPNLKYLSGQWXRLSCTAFRPHEMHSFTLTSAPHENFLSCHIKAQGFWTWKLRNYFDDONYNPEDQPVRIEGFGGGNQDWYKFEVAVMVGGGIGVTPYASILNDLVFGTSTNRYSGVACKKVYFLWICPSHKHFEWFIDVLRDVEKDVNVLEHIFITQFFHKFDLRTMLYLCENHFQG

>7460:002ad8 {"pub_gene_id":"GB51481", "pub_og_id":"EOG090R008X", "og_name":"Similarity:Contains FAD-binding FR-type domain.","level":33392, "description":"Uncharacterized protein "}
MTRRPPRSDSNWITYLLILLUNUPIKTGVHSYADKQRYDGWYNNLAHPDWGSIDSRLIRKMPAAYSDGVMLAGQDRPSPRKLSQLFMQCDGLPSVKNRTALFAFFGQLVTSEIIMASESGCPIEYHRIDVDKCOPKDECQGNKYIPFRRADVDRQTGRSPNSPREQINKVTSWIDGSFVYSSEAWANTMRSFKNGSI
RKFVPRNTMRAPLFNHAVHPUNRMLSPERLYLLGSTWHDSNELGIFYRMHVIAARIQLENPTMSDEDIFQKARRVVIGT[UNIIVEYIPILLILUNUPIKTGVHSDEG]FGKARRVVIGT[UNIIVEYIPILLICDLPPVTGYSDLFGKARRVVIGT[UNIIVEYIPILLICDLPPVTGYSDLFGKARRVVIGT[UNIIVEYIPILLGSTWHDSNLFGF]

OrthoDB

Your search for immunity at Endopterygota level returned 10 groups

Bookmark OrthoDB@Endopterygota | Get All Fasta Get All as Tab delimited?

3. Get ALL gene/protein information of the genes from the selected species for ALL 10 of the search result orthologous groups

pub_og_id		id organism_name	int_pro		_	descript					
EOG090R008X	Similarity:Contains FAD-binding FR-		7070	Tribolium casta		7070:000			Putative uncha	racterized protei	.n
EOG090R008X	Similarity:Contains FAD-binding FR-		7091	Bombyx mori	7091:001		BGIBMGA005478				
EOG090R008X	Similarity:Contains FAD-binding FR-		7165	Anopheles gambi		7165:002				D-binding FR-type	
EOG090R008X	Similarity:Contains FAD-binding FR-		7227	Drosophila mela	<u> </u>				· ·	D-binding FR-type	e domain.
EOG090R008X	Similarity:Contains FAD-binding FR-		7460	Apis mellifera			GB51481 Uncha		protein		
EOG090R00T7	Similarity:Contains HECT (E6AP-type	E3 ubiquitin-prote	in ligase) domain.	33392 7	7070	Tribolium cas	taneum	7070:0016b5	TC007799	Putative un
GLEAN_07799											
EOG090R00T7	Similarity:Contains HECT (E6AP-type	E3 ubiquitin-prote	in ligase) domain.	33392 7	7091	Bombyx mori	7091:00	3707 BGIBMG	A014088	
EOG090R00T7	Similarity:Contains HECT (E6AP-type	E3 ubiquitin-prote	in ligase) domain.	33392 7	7165	Anopheles gam	biae	7165:0021b3	AGAP009516;gamb	if1;GPRGBB3
(Rel-like) doma	in.										
EOG090R00T7	Similarity:Contains HECT (E6AP-type	E3 ubiquitin-prote	in ligase) domain.	33392 7	7227	Drosophila me	lanogaster	7227:000f9c	FBgn0031384	Similarity:
ubiquitin-prote	in ligase) domain.										
EOG090R00T7	Similarity:Contains HECT (E6AP-type	E3 ubiquitin-prote	in ligase) domain.	33392 7	7460	Apis mellifer	a 7460:000	0f03 GB4403	0 Uncharacterized	l protein
EOG090R02QF	Protein kinase C 33392 707	Tribolium cast	aneum	7070:003a76	TC033289						
EOG090R02QF	Protein kinase C 33392 707	Tribolium cast	aneum	7070:003ce1	TC033980						
EOG090R02QF	Protein kinase C 33392 716	Anopheles gamb	iae	7165:002ada	AGAP01198	88	AGC-kinase, C	-terminal			
EOG090R02QF	Protein kinase C 33392 722	Drosophila mel	anogaster	7227:003246	aPKC F	Protein	kinase C				
EOGØ9ØRØ2QF	Protein kinase C 33392 746	Apis mellifera	7460:00	1ccd GB47743							
EOG090R03S4	Nuclear cap-binding protein subunit	1 33392 7070	Triboli	um castaneum	7070:0001	1c8	TC000568	Putative	e uncharacteriz	ed protein	
EOG090R03S4	Nuclear cap-binding protein subunit	1 33392 7091	Bombyx	mori 7091:00	062a B	BGIBMGA0	01579				
EOG090R0354	Nuclear cap-binding protein subunit	1 33392 7165	Anophel	es gambiae	7165:0004	409	Cbp80 80 kD	a nuclear d	cap-binding pro	tein	
EOG090R0354	Nuclear cap-binding protein subunit	1 33392 7227	Drosoph	ila melanogaster	7227:0007	753	Cbp80;FBgn002	2942	cap binding pr	otein 80	
EOG090R0354	Nuclear cap-binding protein subunit	1 33392 7460	Apis me	llifera 7460:00	125a (GB44934	Uncharacteriz	ed protein			
EOG090R04J6	Arsenite-resistance protein 2 333	2 7070 Tribol	ium casta	neum 7070:00	0a61 T	TC003562	Putat	ive unchara	acterized prote	in	
EOG090R04J6	Arsenite-resistance protein 2 333	2 7091 Bomby>	mori	7091:000d97	BGIBMGA00	03480					
EOG090R04J6	Arsenite-resistance protein 2 333	2 7165 Anophe	les gambi	ae 7165:00	2500 /	Ars2	Arsenite-resi	stance prot	tein 2 homolog		
EOG090R04J6	Arsenite-resistance protein 2 333	2 7227 Drosop	hila mela	nogaster 7227:00	13c5 /	Ars2;FBg	n0033062	Arsenite	e-resistance pr	otein 2	
EOG090R04J6	Arsenite-resistance protein 2 333	2 7460 Apis m	ellifera	7460:000ba0	GB43113 l	Uncharac	terized prote	in			
EOG090R04SW	Similarity:Contains 1 RHD (Rel-like	domain. 33392	7070	Tribolium casta	neum 7	7070:001	.660 TC007	697	Dorsal		
		· ·							-		

OrthoDB Your search for **immunity** at Endopterygota level returned 10 groups Bookmark OrthoDB@Endopterygota | Get All Fasta | Get All as Tab delimited ?? 194 genes in 98 species Group EOG090R04SW at Endopterygota level Similarity: Contains 1 RHD (Rel-like) domain. Super Short Summary Info 90 genes in 85 species Group EOG090R0F9M at Endopterygota level \gg Nuclear cap-binding protein subunit 2 🕊 100 genes in 98 species Group EOG090R04J6 at Endopterygota leve \gg Arsenite-resistance protein 2 🖊 Group EOG090R03S4 at Endopterygota level 102 genes in 99 species \gg Nuclear cap-binding protein subunit 1 **Summary** Gene & Group EOG090R0FIQ at Endopterygota level 348 genes in 97 species **Species** Peptidoglycan recognition protein Counts Group EOG090R07LX at Endopterygota level 122 genes in 95 species Protein kinase domain 110 genes in 100 species Group EOG090R008X at Endopterygota level \gg Similarity:Contains FAD-binding FR-type domain

Expanded PGRP orthologous group

Group <u>EOG090R0FIQ</u> at Endopterygota level (<u>View</u>	
	/ Fasta) View Tab Delimited
Peptidoglycan recognition protein	
Functional descriptions	
GO Molecular Function 114 genes with <u>GO:0008270</u> : zinc ion binding	
114 genes with <u>GO:0008745</u> : N-acetylmuramoyl-L-alanine amidase activit	Σ γ
59 genes with <u>GO:0042834</u> : peptidoglycan binding	
GO Cellular Component 58 genes with <u>GO:0005887</u> : integral component of plasma membrane	
58 genes with <u>GO:0005576</u> : extracellular region	
InterPro Domains 80 genes with <u>IPR015510</u> : Peptidoglycan recognition protein	
80 genes with IPR002502: N-acetylmuramoyl-L-alanine amidase domain	
78 genes with <u>IPR006619</u> : Peptidoglycan recognition protein family domain	n, metazoa/bacteria
71 genes with <u>IPR017331</u> : Peptidoglycan recognition protein, PGRP-S	
Evolutionary descriptions	\land
Phyletic Profile 348 genes in 97 species (out of 102)	
single copy in 15 species, multi-copy in 82 species	
Evolutionary Rate 1.05	?
Gene Architecture Median Protein Length 190 (std. 55.9)	(2)
Median Exon Count 2 (std. 3.25)	\bigtriangledown

Orthologs by organism	Selected species only
Organism Protein ID UniProt Description	AAs Exons InterPro
Anopheles.gambiae	
1 AGAP000536 peptidoglycan recognition protein (short) >>	200 3
2 AGAP001212 peptidoglycan recognition protein (Long) >>	278! 3
3 AGAP006342 peptidoglycan recognition protein (short) >>	188 1
4 AGAP006343 peptidoglycan recognition protein (short)	188 1
Drosophila melanogaster	
1 PGRP-SA (<u>Q9VYX7</u>) Protein semmelweis >>>	203 4 Q <u>IPR015510</u> <u>17331</u> <u>02502</u> <u>06619</u>
2 FBgn0033327;PGRP-SC1a;PGRP-SC1b (<u>A0A0B4LEX8</u>) Peptidoglycan-recogniti >>>	185 2 Q IPR015510 17331 02502 06619
³ FBgn0037906;PGRP-LB (<u>A0A0B4K741</u>) Peptidoglycan recognition protein LB >>>	255! 8 Q IPR017331 02502 06619 15510
4 FBgn0043575;PGRP-SC2 (<u>Q2XY98</u>) PGRP-SC2 >>>	184 1 Q IPR015510 17331 02502 06619
5 FBgn0043576;PGRP-SC1a;PGRP-SC1b (<u>Q2XY86</u>) PGRP-SC1a >>>>	185 1 Q IPR017331 15510 02502 06619
6 FBgn0043577;PGRP-SB2 (<u>M9PFJ1</u>) PGRP-SB2 >>>	191 3 Q IPR017331 06619 02502 15510
7 PGRP-SB1 (Q70PY2) Peptidoglycan-recognition protein SB1 >>>	190 2 Q IPR017331 15510 02502 06619
Apis mellifera	
1 GB47805 Uncharacterized protein	194 4
2 GB51741 Uncharacterized protein >	189 4
Bombyx mori	
1 BGIBMGA007987 >	195 4
2 BGIBMGA008038 Peptidoglycan recognition protein >	218 4
3 BGIBMGA012866 >	(128) 3 Expand
Tribolium castaneum 🚳	
1 TC010611 Putative uncharacterized protein >	195 4
2 TC013620 Putative uncharacterized protein >	188 4
3 TC015689 Putative uncharacterized protein GLEAN_15689 >	207 2
Sibling Groups	
Group Overlap InterPro domains	?
EOG090R0IO9 27% IPR015510 02502 06619 17331	

Expanded gene annotation (incl. search term)

7 PGRP-SB1 (Q70PY2) Peptidoglycan-recognition protein SB1 \sim

190 2 Q IPR017331 15510 02502 06619

upkws: extracellular region; immune response; innate immune response; microtubule associated complex; N-acetylmuramoyl-L-alanine amidase activity; peptidoglycan binding; peptidoglycan catabolic process; zinc ion binding

flybase: <u>PGRP-SB1</u> The gene PGRP-SB1 is referred to in FlyBase by the symbol Dmel\PGRP-SB1 (CG9681, FBgn0043578). It is a protein_coding_gene from Drosophila melanogaster. It has one annotated transcript and one polypeptide. Gene sequence location is 3L:16727299..16727989. It has the cytological map location 73C1. Protein features are: N-acetylmuramoyl-L-alanine amidase domain; Peptidoglycan recognition protein; Peptidoglycan recognition protein family domain, metazoa/bacteria; Peptidoglycan recognition protein, PGRP-S. Its molecular function is described by: N-acetylmuramoyl-L-alanine amidase activity; zinc ion binding; peptidoglycan binding. It is involved in the biological process described with: defense response; immune response; peptidoglycan catabolic process. 5 alleles are reported. No phenotypic data is available. No phenotypic class data is available. Summary of modENCODE Temporal Expression Profile: Temporal profile ranges from a peak of very high expression to a trough of very low expression. Peak expression observed in adult female stages.

Ensembl: FBgn0043578 PGRP-SB1 [Source:FlyBase gene name;Acc:FBgn0043578]

UniProt: Q70PY2 Peptidoglycan-recognition protein SB1; Catalytic Activity:Hydrolyzes the link between N-acetylmuramoyl residues and L-amino acid residues in certain cell-wall glycopeptides.; Function:N-acetylmuramyl-L-alanine amidase involved in innate immunity by degrading bacterial peptidoglycans (PGN), preferentially DAP-type PGNs. Probably plays a scavenger role by digesting biologically active PGN into biologically inactive fragments.; Similarity:Belongs to the N-acetylmuramoyl-L-alanine amidase 2 family.; Tissue Specificity:In larvae, it is mainly expressed in fat body.

CTD: <u>39870</u>

GenomeRNAiadatabaseforcellbasedRNAiphenotypes: <u>39870</u>

FlyBasegeneCGID: CG9681

FlybaseAnnotationID: FBan0009681

ExpressionAtlas: FBgn0043578

FlyBase: FBgn0043578

FlybaseGene: FBgn0043578

GO Cellular Component: extracellular region; microtubule associated complex; integral component of plasma membrane

GO Biological Process: immune response

GO Molecular Function: zinc ion binding; N-acetylmuramoyl-L-alanine amidase activity; peptidoglycan binding

C Entrez: PGRP-SB1

Use HELP page to learn about OrthoDB features

Search Parameters

Text Search

?

Enter a gene name, identifier, annotation keyword, phenotype, etc.

- OrthoDB can be queried using relevant **identifiers** of proteins, genes, OrthoDB orthologous groups (EOG...), InterPro domains (IPR...), or Gene Ontology terms (GO:...), as well as with **keywords** associated with protein annotations.
 - Identifiers: UniProtKB, Ensembl, EntrezGene, KEGG, UniGene, GenBank, RefSeq, InterPro, Gene Ontology, AphidBase, BeetleBase, FlyBase, Hymenoptera Genome Database, LepBase, SilkDB, VectorBase, wFleaBase, Mouse Genome Informatics, Saccharomyces Genome Database, etc. e.g. '<u>P38903</u>', '<u>CG10753</u>', '<u>IPR001163</u>'
 - Keyword annotations in UniProtKB and Ensembl: Protein names, gene names, etc. e.g. <u>"Probable small nuclear ribonucleoprotein Sm D1"</u>
 - **Keyword phenotypes**: For Homo sapiens, Mus musculus, Danio rerio, Caenorhabditis elegans, Drosophila melanogaster, Saccharomyces cerevisiae and Escherichia coli, you can search the database using phenotype keywords.
 - Homo sapiens: Human disease data from <u>OMIM</u> (Online Mendelian Inheritance in Man) e.g. "<u>Diabetes mellitus</u>"
 - Mus musculus: High-level Mammalian Phenotype Terms from MGI (Mouse Genome Informatics) e.g. phenotype: <u>"immune system"</u>
 - Danio rerio: Zebrafish phenotype data from <u>ZFIN</u> (The Zebrafish Model Organism Database) e.g. <u>"dead"</u>
 - Caenorhabditis elegans: Phenotypic data from <u>WormBase</u> e.g. <u>"life span variant"</u>
 - Drosophila melanogaster: Data from <u>FlyBase</u> for phenotypic classes containing keywords "lethal", "sterile", and "defective", e.g. <u>"neurophysiology defective"</u>
 - Saccharomyces cerevisiae: Phenotypic data from <u>SGD</u> (Saccharomyces Genome Database) e.g. 'inviable'
 - Escherichia coli: Phenotypic data from EcoGene and essentiality data from DEG (Database of Essential Genes)
- Logical operator NOT use '-' or '!', e.g. 'kinase -serine' or 'kinase !tyrosine'
- Logical operator **OR** use '|', e.g. 'protease | peptidase'.
- Logical operator AND is implicit, i.e. 'sodium transporter' actually means 'sodium AND transporter' (not quoted phrases).
- Use quotes to match a phrase literally, e.g. <u>"Cytochrome P450"</u>.
- Take advantage of the autocomplete lookup feature that offers keyword or identifier suggestions for your search.
- Click the 'Submit' button (or return key) to execute the query.
- The OrthoDB Search Engine is powered by <u>Sphinx</u>.

www.orthodb.org/?page=api Programmatic data access: using the API

OrthoDB API

The OrthoDB data can be programatically accessed using a URL based interface. In our implementation this means that the data can be retrieved using the following URL:

http://www.orthodb.org/CMD?ARG1="value"&ARG2="value&..."

where CMD is a command and all ARGx are arguments to that specific command. Below follows a description of the available commands with arguments.

NOTE the request rate is limited to 1 request/second for the following URL's:

- /blast
- /tab
- /fasta

If the rate is too high, some of the requests will fail with a 503 error.

Data Formats

All data is returned in <u>JSON</u> format, except for **/fasta** and **tab**. JSON data is widely supported by many languages. An overview with many examples can be found <u>here</u>.

The JSON returned is of the generic format:

```
{

"url" : full url of request

"message": message string if status is error

"status" : "ok" or "error"

"data" : array of data

}
```

Programmatic data access: using the API

wget -0 myogs.txt "http://www.orthodb.org/v9.1/search?

level=33392&species=7165,7227,7460,7091,7070

&query=immunity"

Web-get into output file 'myogs.txt'

Use OrthoDB's search mode

Which level to search and which species to return?

What query term or phrase to search for?

Programmatic data access: using the API

wget -O myogs.txt "http://www.orthodb.org/v9.1/search? level=33392&species=7165,7227,7460,7091,7070 &query=immunity"

```
Resolving www.orthodb.org (www.orthodb.org)... 129.194.231.60
Connecting to www.orthodb.org (www.orthodb.org)|129.194.231.60|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 429 [application/json]
Saving to: 'myogs.txt'
myogs.txt 100%[=======>] 429 --.-KB/s in 0s
(52.3 MB/s) - 'myogs.txt' saved [429/429]
```

Programmatic data access: using the API

wget -O myogs.txt "http://www.orthodb.org/v9.1/search? level=33392&species=7165,7227,7460,7091,7070 &query=immunity"

```
more myogs.txt
{"status": "ok", "message": null, "data": ["EOG090R04SW",
"EOG090R0F9M", "EOG090R04J6", "EOG090R03S4", "EOG090R0FIQ",
"EOG090R07LX", "EOG090R008X", "EOG090R00T7", "EOG090R02QF",
"EOG090R0AXC"], "count": 10, "skip": 0, "limit": 1000, "query":
"immunity", "level": 33392, "url":
"http://www.orthodb.org/v9.1/search?level=33392&species=7165,7227,
7460,7091,7070&query=immunity", "universal": null, "singlecopy":
null, "inclusive": 1}
```

Programmatic data access: using the API

perl -e '@ogs=`cat myogs.txt`=~/(EOG\S{8})/g; foreach \$og (@ogs) { \$gp="\$og\.txt"; `wget -0 \$gp "http://www.orthodb.org/v9.1/tab?id=\$og&species=7165, 7227,7460,7091,7070&long=1"`; }'

Loop through groups (here using Perl) Web-get for each group This time a 'tab' search, i.e. get gene annotations Long option to get sequences as well

Programmatic data access: using the API

perl -e '@ogs=`cat myogs.txt`=~/(EOG\S{8})/g; foreach
\$og (@ogs) { \$gp="\$og\.txt"; `wget -0 \$gp
"http://www.orthodb.org/v9.1/tab?id=\$og&species=7165,
7227,7460,7091,7070&long=1"`; }'

Resolving www.orthodb.org (www.orthodb.org)... 129.194.231.60 Connecting to www.orthodb.org (www.orthodb.org)|129.194.231.60|:80... connected. HTTP request sent, awaiting response... 200 OK Length: 490 [text/html] Saving to: 'EOG090R02QF.txt' EOG090R02QF.txt 100%[===========>] 490 --.-KB/s in 0s (48.3 MB/s) - 'EOG090R02QF.txt' saved [490/490]

Programmatic data access: using the API

more EOG090R0AXC.txt

pub_og_id og_name level_taxid organism_taxid organism_name int_prot_id pub_gene_id description sequence

EOG090R0AXCnucleoporin, p88, putative333927070Tribolium castaneum7070:002c17TC014994Putative uncharacterized protein GLEAN_14994MDSTDYLGLSKIKILKNVREAVPEKLKKSINLLAVKYGVLFTWDFANNCVLTLNIKAARSNDGDNVTHQNLFPVLPVMFQPELLLVNDTGTLLLVAGPSGIIVMELPAMHLLYGADSRDVVFCRTHTLDERLLICSDVVQVRQVRFHPGSPRNTHIVALTSDNTLRLYNIENRSAVSVSKVTIGETPIGVFPGTKTSFLAAFGEVGVDFDFGQPEITKSPTNDETQELQWPVFVLRGDGSVYSVTVPLEPKAKWAVKGPLPQNTPEGNPRMEACAIICLNTNPEVVCIANSNGTILHSIVLPLDHETRELLCFE

EOG090R0AXC nucleoporin, p88, putative 33392 7091 Bombyx mori 7091:0033a6 BGIBMGA013223 MTYVAIIKYEYISLVILFCLVENPYEKSKGMIIRSTTYIYIKIFILVEITGRPCMIPTRSYSLDEKFLYTTGEIRRVHWHPISLSHVLV LVSNNAIRLYNVTLKTGPKLVKTYSIGPKPTSLLAGKTILDSLGDTAVDFTPTPDAEHILILRGDGEIYMMDCDLTNKSPLQPKLVGPL AIYPPADDNYGSDSCCILCMGGSDIPPLVVIATSSAALYHCLLLPNSEKEESDRDGYALYVVETVELDVVPEPDAEPYPVQLIKCTDDT YACVHAAGAHTVALPVLAALRHYARAPDGNHPPLGRLYGHTTLTVHSPLCRL

Comparative analysis with your own data

The Hierarchical Catalog of Orthologs **V9.1**

OrthoDB is a comprehensive catalog of orthologs, i.e. genes inherited by extant species from their last common ancestor. Arising from a single ancestral gene, orthologs form the cornerstone for comparative studies and allow for the generation of hypotheses about the inheritance of gene functions. Each phylogenetic clade or subclade of species has a distinct common ancestor, making the concept of orthology inherently hierarchical. From its conception, OrthoDB explicitly addressed this hierarchy by delineating orthologs at each major species radiation of the species phylogeny. The more closely related the species, the more finely-resolved the gene orthologies.

Read more or cite

"OrthoDB v9.1: cataloging evolutionary and functional annotations for animal, fungal, plant, archaeal, bacterial and viral orthologs." Zdobnov EM et al, NAR, Nov 2016, PMID:27899580

Comparative analysis with your own data

Log In or Create an Account	
Email	Easy 1-click login:
Email	f Facebook
Password	g+ Google
Password	
Remember me	
Log In	

Comparative analysis with your own data

The Hierarchical Catalog of Orthologs **V9.1**

OrthoDB is a comprehensive catalog of orthologs, i.e. genes inherited by extant species from their last common ancestor. Arising from a single ancestral gene, orthologs form the cornerstone for comparative studies and allow for the generation of hypotheses about the inheritance of gene functions. Each phylogenetic clade or subclade of species has a distinct common ancestor, making the concept of orthology inherently hierarchical. From its conception, OrthoDB explicitly addressed this hierarchy by delineating orthologs at each major species radiation of the species phylogeny. The more closely related the species, the more finely-resolved the gene orthologies.

Read more or cite

"OrthoDB v9.1: cataloging evolutionary and functional annotations for animal, fungal, plant, archaeal, bacterial and viral orthologs." Zdobnov EM et al, NAR, Nov 2016, <u>PMID:27899580</u>

Example: newly-published aphid genome

Accepted Manuscript

Whole genome sequence of the soybean aphid, Aphis glycines

Jacob A. Wenger, Bryan J. Cassone, Fabrice Legeai, J. Spencer Johnston, Raman Bansal, Ashley D. Yates, Brad S. Coates, Vitor A.C. Pavinato, Andy Michel

- PII: S0965-1748(17)30005-X
- DOI: 10.1016/j.ibmb.2017.01.005
- Reference: IB 2917
- To appear in: Insect Biochemistry and Molecular Biology
- Received Date: 10 May 2016
- Revised Date: 3 January 2017
- Accepted Date: 14 January 2017

Please cite this article as: Wenger, J.A., Cassone, B.J., Legeai, F., Johnston, J.S., Bansal, R., Yates, A.D., Coates, B.S., Pavinato, V.A.C., Michel, A., Whole genome sequence of the soybean aphid, *Aphis glycines, Insect Biochemistry and Molecular Biology* (2017), doi: 10.1016/j.ibmb.2017.01.005.

Cancel

Pause

Using **OrthoDB** in your research

Comparative analysis with your own data

Your files

Upload

Uploading 5.9MB of 8.1MB, a few seconds remaining.

73.2%	
aglycines_prot.fas	Uploading 5.9MB of 8.1MB

No files are uploaded yet.

Make sure your protein sequences are really in a proper FASTA format! Make sure to select just one protein per gene in the case of alternative transcripts

Comparative analysis with your own data

Your files

Upload

File name Size Countdown Date e aglycines_prot.fas 30-Jan-2017 30 days 8.1 MB Make public Delete ? Select analysis type: Mapping) BUSCO File name: Species name: Place at: Map to: aglycines_prot.fas Aphis glycines Insecta Insecta v Drosophila melanogaster, Apis mellifera, Acyrthosiphon pisum, Cimex lectularius, Rhodnius prolixus Run analysis

Use species selector to choose 1-5 compara species Note automatic selection of LCA

Comparative analysis with your own data

Mapping will take quite some time!

You should receive updates on the progress of your mapping job by email

Comparative analysis with your own data

map	file aglycines_prot.fas - DONE
?	noreply@orthodb.org to 🖃
	Job state : DONE Analysis : map Request date : Mon Jan 30 11:30:18 2017 Species name : Aphis glycines Filename : aglycines_prot.fas
	Place at level (taxid) : 50557 Map to level (taxid) : 50557 Map to species (taxid) : 13249,7029,7227,7460,79782
	map for Aphis glycines is successfully completed

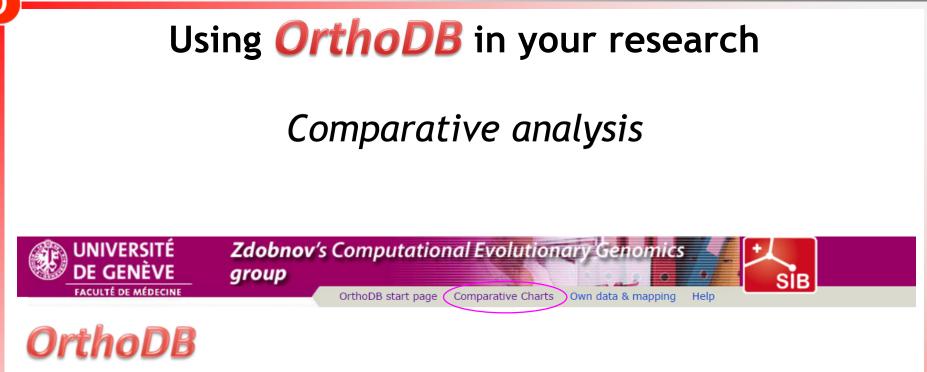
Download result from here: http://www.orthodb.org/analysis?id=8c0fea3037046eeba384c2e21fb53f01c316372b

Download results of your gene IDs mapped to OrthoDB orthologous group IDs Browse OrthoDB with your species included

Comparative analysis with your own data

File name	Species name	Placed at	Mapped to	State
eglycines_prot.fas	Aphis glycines	Insecta	Insecta	DONE

Download Delete


ClusterId	GeneId	Туре	Length	Start	End	Score	NormScore	Evalue
EOG090W0000	AG012407-PA	19 8443	7 8449	10453 -1	0			
EOG090W0000	AG000623-PA	10 4107	16 4122	36962.6	66.6834	0		
EOG090W000A	AG005522-PA	10 3129	84 3212	8717.8	15.7276	0		
EOG090W000A	AG005387-PA	10 2788	31 2818	5275.7	9.51777	0		
EOG090W002S	AG013237-PA	10 1396	838 223	3 4391.3	7.92224	0		
EOG090W00RS	AG012305-PA	10 423 2	268 690	1525.8 2	.75266 0			
EOG090W07PT	AG003095-PA	10 200 3	L97 396	692.2 1.	24878 0			
EOG090W07PU	AG009735-PA	10 344 :	L 344 65	6.8 1.18	492 0			
EOG090W07PX	AG007782-PA	10 229 3	35 263 6	25.2 1.1	2791 0			
EOG090W00RX	AG006888-PA	12 1044	1 1044	1983 3.5	7749 0			
EOG090W00RX	AG019009-PA	10 1004	50 1053	1624.8	5.62799	0		
EOG090W07RA	AG004328-PA	10 608 2	26 633 1	129 2.03	68 0			

1) Download results of your gene IDs mapped to OrthoDB orthologous group IDs

Comparative analysis with your own data

Evolutionary descriptions				
Phyletic Profile	275 genes in 116 species (out of 119) single copy in 19 species, multi-copy in 97 specie	25		
Evolutionary Rate	0.82			
Gene Architecture	Median Protein Length 4151 (std. 1718.2) Median Exon Count 29 (std. 20.35)			
Orthologs by organism		 Selected species only 		
Organism Protein ID U	niProt Description	AAs Exons InterPro		
<u>Aphis glycines</u>				
1 AG000787-PA A user gen	e	undefined		
2 AG009057-PA A user gen	e	undefined		
<u>Drosophila melanogaster</u>				
1 FBgn0037726 (<u>A0A0B4K6</u>	514) AAA+ ATPase domain >>>	4724 39 Q <u>IPR026983</u> <u>13594</u>		
2 FBgn0267432 (<u>A8QI30</u>)	male fertility factor kl3 >>>	4593 16 Q <u>IPR026983</u> <u>13602</u>		
Apis mellifera				
1 GB49507 >		4623 65		
2 GB54468 >		4431 37		
<u>Acyrthosiphon pisum</u>				
ACYPI005174 >		4670 64		
<u>Cimex lectularius</u>				
CLEC008864		4412		
<u>Rhodnius prolixus</u>				
RPRC004988 >		4663 80		

2) Browse OrthoDB with your species included

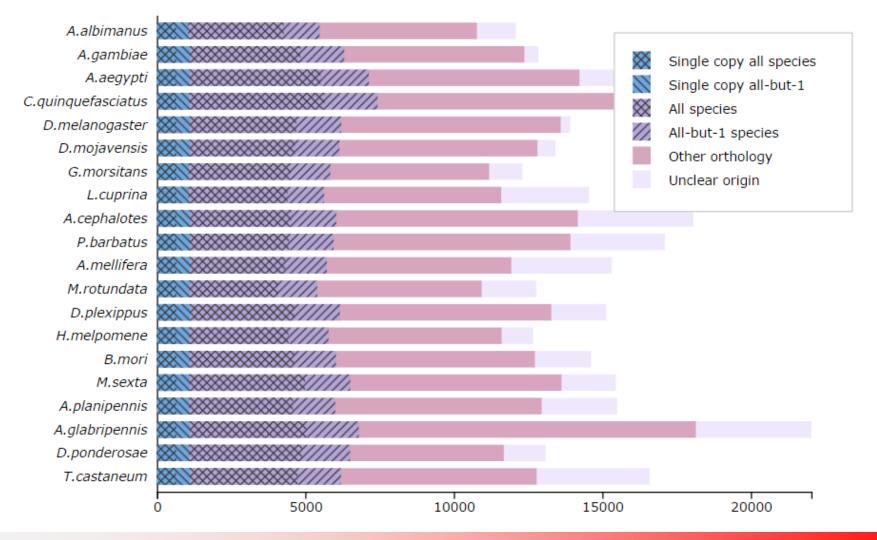
Comparative Charts

This OrthoDB online tool allows the generation of a comparative overview of the gene content across selected genomes. The total gene counts and the fractions of orthologs among these species shows the level of relatedness among the genomes, highlighting the "universal" core of genes and the ones evolving under single-copy constraint [PMID:21148284].

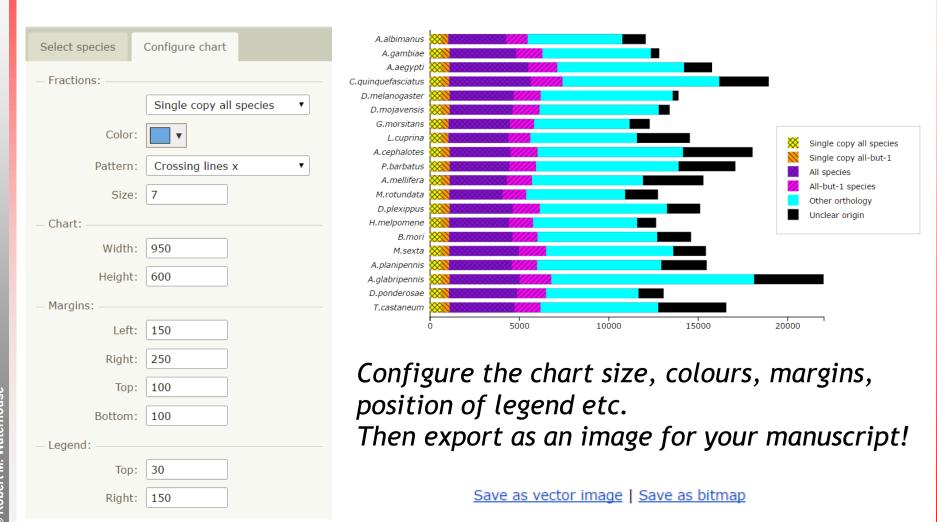
You can select up to 20 species on the right panel to be included into the comparative genomics chart. The colors, patterns, etc can be customised from the "Configure chart" tab on the right panel. The fractions shown are hyperlinked to their corresponding Ortholog Groups from which the gene counts were made. The tailored chart can then be exported as a publication quality vector graphics.

Explore an example

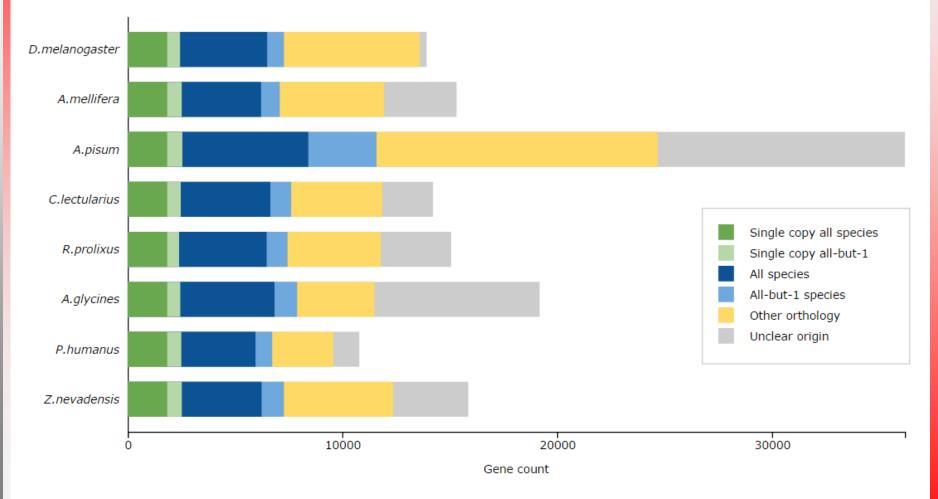
Comparative analysis


Aedes aegypti (yellow fever mosquito)	Select species Configure chart	
Belgica antarctica		
Culex quinquefasciatus (southern house mosquito)	Top level:?-	
Lutzomyia longipalpis	Endopterygota 🔹	
Mayetiola destructor (Hessian fly)	Species to display: Clear all	
Phlebotomus papatasi	Eukaryota (eucaryotes)	
Polypedilum nubifer	□ ⊘ Metazoa (metazoans)	
Polypedilum vanderplanki (sleeping chironomid)	Arthropoda (arthropods)	
Brachycera 26 e.g. D.melanogaster	 Insecta (true insects) Endopterygota 	
Drosophila 13 (fruit flies) e.g. D.melanogaster	* 🖉 Diptera <i>(flies)</i>	
Drosophila ananassae	 * Ø Nematocera * Ø Anopheles 	
Drosophila erecta	 ✓ Ø Anopheles albimanus 	
Drosophila grimshawi	✓ ⊘ Anopheles gambiae (≁	
Drosophila melanogaster (fruit fly)	 Aedes aegypti (yellow fe Culex quinquefasciatus (
	* Ø Brachycera	
Drosophila mojavensis	* Ø Drosophila (fruit flies)	
Drosophila persimilis	O Drosophila melanogas	
ant was to 20 an arise suct and attended to a lasting		

Submit


Select up to 20 species, automatic selection last common ancestor: Submit!

© Robert M. Waterhous


Comparative analysis

Comparative analysis

Comparative analysis with your own data

Cowhen selecting species for orthology comparison charts please be mindful that some genome projects may not yet be published!

Please respect international genomics data usage conventions and do not use data from unpublished genome projects without explicit permission from the data producers!

Using **OrthoDB** in your research BUSCO protein set assessments Your files Upload File name Size Date Countdown e aglycines_prot.fas 8.1 MB 30-Jan-2017 30 days Make public Delete ? Select analysis type: Mapping BUSCO File name: Run name: BUSCO clade: aglycines_prot.fas Aphisalvcines . insecta Run analysis

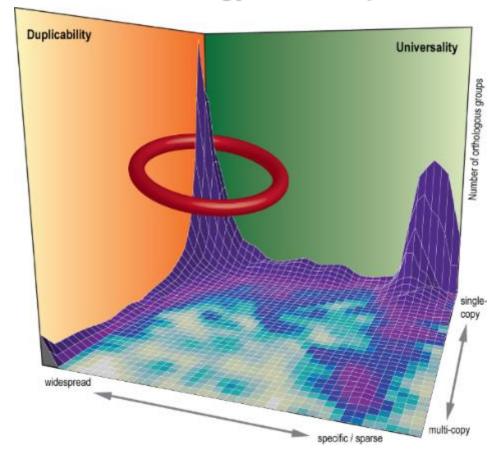
Gene annotation set quality control with Benchmarking Universal Single-Copy Orthologs

Using **BUSC** in your research

Ortho-Groups with genes found in the majority of species as single-copy orthologues

Evolutionary Expectation

for them to be found in any newly-sequenced genome


Implemented Assessments

Gene Content Completeness # genome assemblies # annotated gene sets # assembled transcriptomes

Bonus Features

genes for phylogenomics
gene predictor training

Orthology Landscape

http://busco.ezlab.org

BUSCO protein set assessments

Wenger et al, 2017

understanding of aphid evolution. We generated a 302.9 Mbp draft genome assembly for *Ap. glycines* using a hybrid sequencing approach. This assembly shows high completeness with 19,182 predicted genes, 92% of known *Ap. glycines* transcripts mapping to contigs, and substantial continuity with a scaffold N₅₀ of 174,505 bp. The

File name	Run name	BUSCO clade	Complete (single-copy)	Complete (multi-copy)	Fragmented	Missing	Total
ø aglycines_prot.fas	Aphisglycines	insecta	80.5%	10.4%	2.0%	7.1%	1658

Download Delete

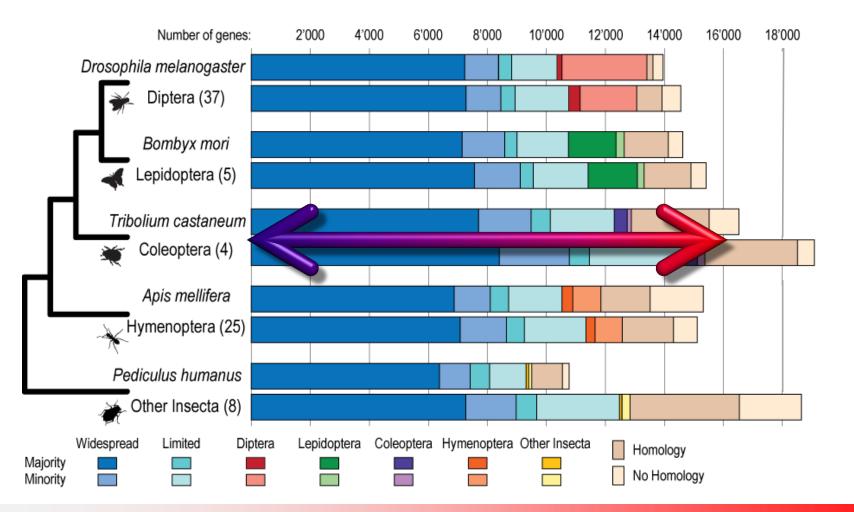
C:90.9%[S:80.5%,D:10.4%],F:2.0%,M:7.1%,n:1658

1508	Complete BUSCOs (C)
1335	Complete and single-copy BUSCOs (S)
173	Complete and duplicated BUSCOs (D)
33	Fragmented BUSCOs (F)
117	Missing BUSCOs (M)
1658	Total BUSCO groups searched

<u>What</u> is orthology?

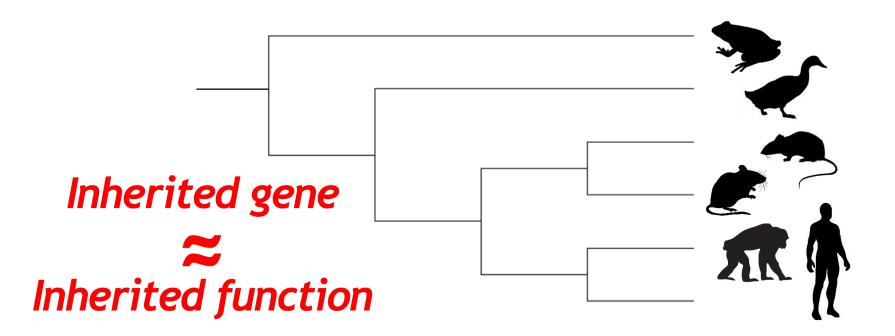
Understanding the definitions

How does one delineate orthology?


Getting to grips with the methodologies

What does OrthoDB offer?

Using orthology in your research


Why does one need to delineate orthology?

Tracing the Evolutionary Histories of all genes in extant species
 Building Hypotheses on Gene Function informed by evolution

Why does one need to delineate orthology?

As orthologs share a common ancestry ... they can be considered to be "equivalent" genes in different species

Thus, any **hypothesis** that they share a **common function** is a relatively reasonable **"best guess"** assumption

Why does one need to delineate orthology?

By tracing the **Evolutionary Histories** of all genes in extant species We can build **Hypotheses on Gene Function** informed by evolution

"The validity of the conjecture on functional equivalency of orthologs is crucial for reliable annotation of newly sequenced genomes and, more generally, for the progress of functional genomics.

The huge majority of genes in the sequenced genomes will never be studied experimentally, so for most genomes transfer of functional information between orthologs is the only means of detailed functional characterization."

Have you or will you use OrthoDB orthology?

Please cite relevant Nucleic Acids Research database issue publication

OrthoDB	OrthoDB University of Geneva Medical School, Swiss Institute of Bioinfor Verified email at unige.ch - Homepage	The Formatics	villow -
Title 1-5		Cited by	Year
fungal, plant, archa	aloging evolutionary and functional annotations for animal, eal, bacterial and viral orthologs Hdt, D Kuznetsov, RM Waterhouse, FA Simão, , gkw1119		2016
free software	e of the hierarchical catalog of orthologs and the underlying nfeldt, TJ Petty, RM Waterhouse, FA Simão, 43 (D1), D250-D256	79	2015
OrthoDB: a hierarchical catalog of animal, fungal and bacterial orthologs RM Waterhouse, F Tegenfeldt, J Li, EM Zdobnov, EV Kriventseva Nucleic acids research 41 (D1), D358-D365		177	2013
OrthoDB: the hierarchical catalog of eukaryotic orthologs in 2011 RM Waterhouse, EM Zdobnov, F Tegenfeldt, J Li, EV Kriventseva Nucleic acids research 39 (suppl 1), D283-D288		127	2011
OrthoDB: the hierarchical catalog of eukaryotic orthologs EV Kriventseva, N Rahman, O Espinosa, EM Zdobnov Nucleic acids research 36 (suppl 1), D271-D275		81	2008

Questions? Write to us: support@orthodb.org

Prof. Evgeny Zdobnov Professor, Uni. Geneva Group Leader, SIB

Dmitry Kuznetsov Scientific Programmer

• OrthoDB Development

Dr Panos Ioannidis Postdoctoral Fellow • Arthropod Genomics

Mathieu Seppey PhD Student

BUSCO Assessments

Dr Evgenia Kriventseva Research Associate

OrthoDB Management

Dr Fredrik Tegenfeldt Scientific Programmer • OrthoDB Development

Dr Robert Waterhouse Postdoctoral Fellow • Arthropod Genomics

Felipe Simão PhD Student • BUSCO Assessments

& all other members of the Zdobnov Computational Evolutionary Genomics Group