The pleasures and perils of assembling insect genomes

Adam M. Phillippy Head, Genome Informatics Section, NHGRI

The assembly problem

Genome assembly with short reads

Bigger pieces are better

"It"	>1,000	SSR
"It was"	320	TE
"It was the best"	2	SegDup
"It was the best of times"	1	Unique
"With his hands in his pockets"	3	Meta

Genome assembly with long reads

Long reads to the rescue?

Can you Canu?

- Long read data is noisy
 - Base errors
 - Chimeric reads
 - Solution: read clustering, correction, and trimming
- Overlaps are long, and graph is big
 - All-pairs alignment is slow
 - Full graph is a giant tangle (due to repeats)
 - Solution: MinHash "best" overlap graph
- D. melanogaster results
 - Celera Assembler v8: 630,000 CPU hours, 15 Mbp NG50
 - Canu v1: **500** CPU hours, 21 Mbp NG50

Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Koren et al. *Genome Research* (2017)

Complete D. melanogaster assembly

Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Berlin et al. *Nature Biotechnology* (2015)

Can long reads solve assembly?

2012: Bacteria (10⁶ bp)

2014: Yeast (10⁷ bp)

2014: Drosophila (10⁸ bp)

???: Human (10⁹ bp)

New advances in sequence assembly. Phillippy. Genome Research (2017)

Ultra-long reads

Nanopore dimensions

ONT R9 pore

Engineered *E. coli* CsgG membrane protein

*Assuming 3.4 Å per bp, 1 Mbp = 3,400,000 Å = 40,000x height of the pore

Nanopore sequencing of human genomes

- GM12878 Utah/Ceph
 - > 35x MinION R9.4
 - 11 kb N50 read len
 - 3 Mbp N50 contig len

- Clive Brown, ONT
 - 60x MinION R9.4
 - 19 kb N50 read len
 - > 30 Mbp N50 contig len

Nanopore sequencing and assembly of a human genome with ultra-long reads. Jain et al. *Nature Biotechnology* (2018)

Ultra-long reads

- 100 kb read N50, max close to 1 Mb!
 - Sambrook and Russel phenol-chloroform prep
 - Minimal pipetting, high input to rapid (transposase) kit

http://lab.loman.net/2017/03/09/ultrareads-for-nanopore/ (Josh Quick & Nick Loman, U. Birmingham)

Human genome, 2001

ref28 / hg10 : N50 0.5 Mbp

Cliveome, 2017

Cliveome 60x : NG50 29.5 Mbp

Not so fast...

Clive Brown is not an insect

The perils

Tiny bugs

- Can't sequence a single individual
- Contamination risk
- Repeats
 - Every genome is different
- Diversity
 - A pot of bugs is a metagenome

Contamination

"Tardigate"

No evidence for extensive horizontal gene transfer in the genome of the tardigrade *Hypsibius dujardini*. Koutsovoulos et al. *PNAS* (2016)

Repeats

- Mealworm beetle
 - Brenda Oppert, USDA
 - Why isn't Canu finishing?

Runaway satellite

- ▶ 60% of genome is a 142 nt repeat
- Required adjusting Canu parameters for repeat weighting/screening

Distribution and sequence homogeneity of an abundant satellite DNA in the beetle, *Tenebrio molitor.* Davis and Wyatt, *Nucleic Acids Research* (1989)

Diversity

- Heterozygous diploids
 - Some bugs hard to inbreed
 - Large populations, large diversity

- Grind up and sequence a pot of bugs
 - 100+ mosquitos
 - ▶ \geq 2 alleles at each locus?
 - Polymorphic inversions & integrations?

Improved Aedes aegypti mosquito reference genome assembly enables biological discovery and vector control. Matthews et al. *bioRxiv* (2017)

Dealing with heterozygosity

Diploid assembly graph

Pseudo-haplotype + alts

Reality not so simple

Two E. coli strains

- Imagine now...
 - N alleles mixed at different abundances
 - Plus, long high-copy repeat families

Aedes aegypti example

- Genome size ~1.3 Gbp
- Assembly size
 - FALCON-Unzip primary: 1.7 Gbp
 - FALCON-Unzip primary + alts: 2.0 Gbp
 - Canu: 2.8 Gbp
- "Deduplicated" with Hi-C and contig alignments

Improved Aedes aegypti mosquito reference genome assembly enables biological discovery and vector control. Matthews et al. *bioRxiv* (2017)

De novo reference genomes

Contigs ≠ Chromosomes

Hi-C chromatin conformation capture

Rabl configuration

Fig credit: Phase Genomics (top/left), Dudchenko et al. Science (2017) (bottom right)

VGP ordinal sequencing recipe

Observations

- PacBio : contigs
- 10XG : scaffolds, phasing, and polishing
- BioNano : scaffolds and validation
- Hi-C: chromosome-scale scaffolds and phasing
- What's essential for reference genomes?
 - Start with long reads, add others as needed
 - Thorough validation
 - DO NOT ignore haplotype variation... (Korlach & Jarvis 2017)

Single-molecule sequencing and chromatin conformation capture enable de novo reference assembly of the domestic goat genome. Bickhart et al. *Nature Genetics* (2017)

Scaffolding pseudo haplotypes is not fun

Scaffold interleaving

Hard solution: scaffold the graph

Easy solution: trio binning

Dam assembly

Pseudo vs complete haplotypes

FALCON-Unzip

TrioCanu

Koren, Rhie, et al. (in preparation)

Excellent continuity of both haplotypes

Koren, Rhie, et al. (in preparation)

Complex haplotype variation

Y-axis: Angus paternal haplotype, X-axis: Brahman maternal haplotype (MHC class II)

Short reads miss large variation

Corrected phase block NG50: TrioCanu: 12.92 Mbp, 10x: 4.26 Mbp

Long read polishing is essential

- Cannot map short reads to repeats and errors
 - Therefore, cannot polish/assemble repeats with short reads
 - Long read assemblies more accurate in repeats
 - Beware of haplotype variation

In some regions, short-read polishing can actually harm the assembly

All assemblies are wrong, some are useful

Tools

- Long-read assembly
 - FALCON-Unzip, Canu, Flye, wtdbg
- Scaffolding
 - Salsa, 3D-DNA, HiRise*, Scaff10x, ARCS, BioNano
- Polishing
 - Quiver/Arrow, Nanopolish*, FreeBayes, Pilon, PBJelly*
- QC & Validation
 - BioNano, BUSCO, **Mash**, BlobTools, Juicebox
 - GenomeScope, KAT, Assemblytics, IGV

Tools in bold from the Phillippy lab

Summary

Haploid assembly is solved by long reads

- But most sequencing samples are not haploid
- Reads will get longer and cheaper
 - Nanopore promising, but behind in consensus quality
- Remaining assembly challenges
 - Complete haplotype recovery
 - Diploids, polyploids, and populations
 - Heterochromatin and large duplications
 - New representations and tools

Acknowledgements

genomeinformatics.github.io

- Sergey Koren
- Brian Walenz
- Alexander Dilthey
- Arang Rhie
- Jay Ghurye

